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Managementsamenvatting 

Meer inzicht in manieren om de toxiciteit van persistente, mobiele organische stoffen  

(PMOC’s) te voorspellen 

Auteurs: Renske Hoondert, Miina Yanagihara, Thomas ter Laak 
Onderzoek heeft meer inzicht gebracht in manieren om toxiciteit van stoffen te voorspellen. Een random forest 

analyse (een machine learning model) blijkt geen verband te laten zien tussen toxiciteit en stofstructuur, maar wel 

tussen stofkenmerken als mobiliteit en persistentie en de toxiciteit van een stof. Ook regressieanalyses lieten een 

significante correlatie zien tussen toxiciteit en de stofeigenschappen die de mobiliteit bepalen, maar met een lager 

voorspellend vermogen dan de random forest analyse. Het voorspellend vermogen van regressiemodellen op basis 

van stofstructuur was juist hoger dan het voorspellend vermogen van random forest analyses op basis van 

stofstructuur. Dit betekent dat de relatie tussen stofkenmerken en toxiciteit waarschijnlijk niet lineair (evenredig) is. 

Clustering van de toxiciteitstesten in de modellen resulteerde niet in betere voorspellingen. Stofstructuur en 

stofeigenschappen als voorspellende variabelen in modellen van een subset van toxiciteitstesten leverden wel 

voldoende informatie op om toxiciteitsklassen in plaats van toxiciteit te voorspellen (d.w.z. ‘lage’, ‘medium’, en 

‘hoge toxiciteit’). Dit kan de basis vormen voor een toekomstig hulpmiddel om toxiciteitsklassen te voorspellen in 

plaats van exacte toxiciteitswaarden. 

 

 
Voorspelde toxiciteitswaarden (y-as) uitgezet tegenover gemeten toxiciteitswaarden (x-as) voor PMOC-stoffen en andere stoffen en voor de 
trainingsdataset (de data waarop het model gebaseerd is) en de testdataset (de data waarop het model NIET gebaseerd is). De modellen die 

zijn afgeleid in deze studie zijn gebaseerd op structuren van meer dan 5000 stoffen en meer dan 600 individuele toxiciteitstesten. 

 

Belang: de relatie tussen stofstructuur, -

eigenschappen en toxiciteit ophelderen  

In een eerder project (zie BTO 2023.060 – Zijn 

PMOC’s minder giftig?) is gekeken of persistente 

mobiele organische stoffen minder giftig zijn dan 

stoffen die dat niet zijn. Hieruit bleek dat meer 

mobiliteit van een stof vaak overeenkomt met een 

lagere toxiciteit. Maar er zijn andere factoren die 

mogelijk een rol kunnen spelen in de biologische 

activiteit van stoffen, zoals de structuur en de aan-

/afwezigheid van bepaalde groepen. Ook rees de 

vraag of toxiciteitstesten konden worden geclusterd 

om de dataset te vergroten en mechanismen tussen 

specifieke stofeigenschappen (structurele 

elementen) en toxiciteit beter te begrijpen en te 

kunnen voorspellen. 

Aanpak: de relatie tussen structuur, eigenschappen 

en toxiciteit van een stof 

De relatie tussen de stofeigenschappen die stoffen 

persistent en mobiel maken en hun toxiciteit is met 

statistische technieken onderzocht. Met random 

forest analyses is bestudeerd welke stof-

eigenschappen en groepen van atomen 

(structuurelementen) correleren met gemeten 

effectconcentraties in toxiciteitstesten. Deze 
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effectconcentraties komen uit de ToxCast dataset die 

603 toxiciteitstesten en 5,114 stoffen omvat. 

Vervolgens is de relatie tussen deze 

stofeigenschappen en effectconcentraties 

geanalyseerd met lineaire regressiemodellen. Daarna 

zijn de toxiciteitstesten geclusterd op basis van 

diverse categorieën (bijvoorbeeld doeltype van de 

test of organisme-weefselcombinatie) en zijn deze 

technieken herhaald en geëvalueerd. 

Resultaten: mobiele stoffen zijn gemiddeld minder 

giftig, persistentie zegt daarover niets  
De random forest analyse in het huidige onderzoek 

toonde geen verband aan tussen toxiciteit en 

stofstructuur, terwijl wel een verband werd 

aangetoond tussen stofkenmerken (bijvoorbeeld 

mobiliteit en persistentie) en toxiciteit. De 

daaropvolgende regressieanalyses lieten opnieuw 

een significante correlatie zien tussen de toxiciteit en 

de stofeigenschappen die de mobiliteit bepalen, 

maar het voorspellend vermogen voor het 

regressiemodel was wel lager dan voor het random 

forest model, terwijl het voorspellende vermogen 

voor regressiemodellen op basis van stofstructuur 

juist hoger was dan voor random forestmodellen op 

basis van stofstructuur. Dit betekent dat de relatie 

tussen stofkenmerken en toxiciteit waarschijnlijk niet 

lineair (evenredig) is. De voorspellingen werden ook 

niet beter op het moment dat de toxiciteitstesten 

werden geclusterd.    

 

Toepassing: beperkingen van de modellen 

belemmeren toepasbaarheid in (drink)watersector 
Deze studie heeft meer inzicht gegeven in (het 

voorspellen van) de toxiciteit van stoffen met behulp 

van de ToxCast-database. De gebruikte modellen 

hebben echter beperkingen (zoals de gelimiteerde 

datasets per toxiciteitstest en hun onderlinge 

correlaties) die hun toepasbaarheid in de 

(drink)watersector belemmeren. De in de database 

opgenomen eindpunten van de toxiciteitstesten 

variëren aanzienlijk in bijvoorbeeld doeltype en 

testontwerp. Stofstructuur op zichzelf kan de 

verschillen in toxiciteit in deze testen niet verklaren 

en mogelijk zijn nog steeds onvoldoende data 

beschikbaar om betrouwbare correlaties af te leiden 

(zie figuur). Vaak leverden stofeigenschappen (vooral 

die gerelateerd aan persistentie en mobiliteit) als 

verklarende variabelen in veel gevallen 

(toxiciteitstesten) wél voldoende betrouwbare 

voorspellingen voor de activiteit in de test. Net als in 

eerder onderzoek (zie rapport BTO 2023.060) zijn 

mobielere, persistentere verbindingen doorgaans 

minder giftig. De betrouwbaarheid van de 

voorspellende modellen nam echter af wanneer 

testeindpunten werden geclusterd op basis van een 

van de categorieën. Stofstructuur en 

stofeigenschappen als voorspellende variabelen in 

modellen van een subset van toxiciteitstesten 

leverden voldoende informatie op om 

toxiciteitsklassen in plaats van toxiciteit te 

voorspellen (d.w.z. ‘laag’, ‘medium’, ‘hoog’). Om 

deze reden voorzien we in toekomstig onderzoek de 

ontwikkeling van een hulpmiddel om 

toxiciteitsklassen te voorspellen, in plaats van exacte 

toxiciteitswaarden voor deze specifieke subset van 

eindpunten. Daarnaast rijst de vraag of de 

toxiciteitstesten die zijn opgenomen in ToxCast wel 

de juiste testen zijn om daadwerkelijke effecten op 

organismeniveau te bepalen. Mogelijk leiden deze 

tot te hoge of juiste te lage schattingen van het 

effect van stoffen.  

 

Rapport  

Dit onderzoek is beschreven in het rapport A deeper 

understanding of PMOC toxicity (BTO 2023.086).   
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1 Introduction 

Over the years, persistent and mobile (organic) compounds (PM(O)Cs) have been receiving increased attention in the 

drinking water sector. A compound will be labeled as a PMOC if it meets three criteria (partly based on criteria set by 

Neumann and Schliebner (2019)): i) the compound is organic; ii) the lowest organic carbon-water coefficient log Koc 

over the pH range of 4-9 is less than 4.0; and iii) the degradation half-life in fresh or estuarine water at 12 °C is higher 

than 40 days. PMOCs may pose threats to human health and the environment as the high mobility in water (as a 

result of their hydrophobicity) and persistence of these compounds lead to their occurrence and accumulation in 

surface water and drinking water sources. Additionally, some of these substances also tend to accumulate in the food 

chain, due to their bioaccumulative potential (Ghisi et al., 2019). The water sector is increasingly confronted with 

these substances. Because the high hydrophobicity of these chemicals makes it challenging to remove them by 

conventional water treatments, it is becoming increasingly important to estimate risks associated with PMOC 

emissions. For many of these chemicals, little is known about their toxicity as ‘mobility’ has historically been neglected 

as a prioritization criterium for ecotoxicological assessment. As it is time consuming and expensive to conduct in vivo 

and in vitro toxicity experiments, in silico approaches are useful in estimating hazards associated with such 

substances. The advantage is that they can be relatively easily conducted and do not require compound availability 

to conduct experiments. A disadvantage, however, is the lack of suitable, large datasets which may serve as basis e.g. 

for in silico predictive machine learning models (Hemmerich et al., 2020).  

 

In a previous study, we focused on associations between toxicity of chemicals and their physicochemical properties 

that determine persistence and mobility in the environment. Random Forest analyses and multiple linear regression 

analyses indeed showed that properties related to polarity (hydrophilicity and mobility), particularly KOW and KOC, are 

inversely related to concentrations that elicit responses in bioassays (‘effect concentrations’ – AC50), confirming that, 

in general, more polar chemicals are less toxic (BTO 2023.060: “Are PMOCs less toxic?”). The associations presented 

in the previous study indicate that PMOCs interact less with tissues, cell membranes, and receptors than similar but 

more hydrophobic chemicals, leading to lower intrinsic toxicity. However, the study also indicated that it may be 

difficult to predict (human) toxicity based on these physicochemical properties alone, as the processed ToxCast 

dataset of bioassay effect concentrations (at that time based on a list of water relevant PMOCs) covers not only a 

very diverse set of chemicals with different toxic modes of action, but also includes a large variety of assays with 

different toxicological endpoints. Furthermore, studies have shown that correlations between physicochemical 

descriptors (i.e. log Kow and log Koc) may not always be linear (Calleja et al., 1994a; Calleja et al., 1994b; Mackay et al., 

2009). At the moment, a mechanistic understanding of what makes PMOCs more or less toxic is yet to be developed.  

In the present study, we aim to deepen the understanding of PMOC toxicity by building upon the dataset and 

knowledge developed in this previous project and by producing QSARs (Quantitative Structure Activity Relationships) 

based on both linear regression analysis and random forest analysis (machine learning) to predict toxicity of PMOCs 

and non-PMOCs. Instead of focusing on a limited dataset of ~3000 chemicals, we now include the complete ToxCast 

database, containing tens of thousands of chemicals, and thousands of in vitro assays (Feshuk et al., 2023). Next to 

exploring non-linear relationships between toxicity and general physicochemical descriptors (e.g. Kow, Koc), we also 

look into structural properties and functional groups (taken from the OECD QSAR Toolbox (Schultz et al., 2018)) as 

explanatory variables in our models, and into grouping in vitro assays based on ‘target’ and ‘study design’ information 

from the individual experiments themselves. This information is based on annotations recommended by Phuong et 

al. (2014) on ToxCast assay characteristics including the intended target type, technological target type, assay design 

type, and signal direction.  



 
 

 

BTO 2023.086 | December 2023  A deeper understanding of PMOC toxicity 8 

In addition to the development of QSARs based on ToxCast data from in vitro assays, the identification of adverse 

outcome pathways (AOPs) may be useful to provide information on systemic toxicity, by linking chemical exposure 

to a series of events leading to an adverse health effect in humans. Several tools have been developed to provide 

information on adverse outcome pathways of chemicals, including the AOP wiki (Society for the Advancement of 

Adverse Outcome Pathways (SAAOP), 2023) and the AOP-helpFinder (Jaylet et al., 2023; Université Paris Cité, 2023). 

The latter tool highlights features to facilitate to search and interpret AOPs more easily (Jaylet et al. 2023). This tool 

is based on natural language processing (text mining) to search keywords in scientific literature stored in PubMed 

database, by screening abstracts. The search result is provided with a score to support the weight of evidence 

approach (Hardy et al., 2017). In the present study, we explored AOPs related to PMOCs that were listed based on 

the methodology described in paragraph 2.1. The AOP-helpFinder was employed in the analysis to search for possible 

AOPs from a wide range of previous studies in PubMed (Appendix II). A better understanding of PMOC toxicity will 

allow the identification of new and potentially hazardous PMOCs based on their chemical structures (e.g. specific 

structural alerts and features) and physicochemical properties that drive persistence and mobility. As such, the 

knowledge gap on the toxicity of PMOCs is narrowed, and PMT (persistent, mobile and toxic) chemicals can be 

identified from the larger pool of PMOCs for targeted risk mitigation. 
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2 Methods 

2.1 Data acquisition, quality and formatting 

To gain insight into the toxicity of PMOCs, the complete ToxCast dataset was downloaded, consisting of 21 databases, 

encompassing over 3.7 million toxicity data records (U.S. EPA, 2015). When only including active substances 

(substances triggering a toxicological response, an active hit call), the resulting dataset consists of 1677 individual in 

vitro assays endpoints (based on a smaller number of unique assays) from 20 sources (separate databases), with 

357,010 data entries for 8,119 unique substances (based on CAS number). In ToxCast, the active concentration at 

which 50% of the effect is observed (AC50 in μM) is calculated using experimental concentration response series for 

a wide range of in vitro bioassays and three model types; a constant (two-parameter) model, a Hill (three parameter) 

S-model, and a gain-loss model, which is the product of two (three parameter) Hill models.  

 

Log AC50s (the active concentration at which 50% of the effect is observed) for the best predictive model (based on 

lowest Akaike Information Criterion (AIC) (Feshuk et al., 2023)) are calculated automatically. In ToxCast, 

concentration response series only get an active hit call (and high quality rating) when they meet three criteria (Filer 

et al., 2014): 

 

1. The Hill model (S-curve model, see Figure 1) should emerge as the model with the best fit (based on lowest 

AIC – Akaike Information Coefficient (Feshuk et al., 2023)) 

2. The top of the modeled curve must be above the efficiency threshold (efficacy cutoff, the maximal 

experimental value on which the model was based) 

3. For at least one concentration, the median response must be above the efficacy threshold 

The complete dataset was cleaned up for analysis based on three criteria, based on: 

• the number of active hit-calls (described above, especially criterion 1); 

• the solubility of the chemicals (which should not be lower than the AC50 of the concentration-response 

curve); 

• the sample size of the sub datasets. 

 

In order to build a suitable database that can act as a training dataset in deriving our models, in the modelling 

exercise, we are only interested in experiments that meet aforementioned criteria, especially the first criterion. 

Below, a histogram depicting the percentage of the number of individual experiments in which the Hill model is the 

model with the best fit, for all individual in vitro assays, is shown (Figure 1). The figure shows that – in general – for 

most chemicals tested for the in vitro assay endpoints, the Hill model did NOT appear as the best fitted model (0-

50%), while for a small subset of in vitro assay endpoints for all chemicals (100%) the Hill model appeared  as the best 

fitted model.  
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Figure 1: Histogram depicting the percentage of individual concentration-response experiments in which the Hill model is the best fitting model, 

per individual in vitro assay. X-axis: percentage hill model ‘wins’, y-axis: percentage of all experiments included in the dataset. 

 

1) For 69 in vitro assays, for 100% of the individual experiments the Hill models appeared to have the best fit. 
However, sample sizes for these in vitro assays are extremely small (< 4 chemicals analyzed per in vitro assay 
endpoint; complete concentration-response curves – including replicates), and in total only 132 data records 
out of 357,010 data records (= single experiments) in the complete dataset are based on bioassays with a 
100% hill model “winning” percentage. These data records were later removed from the dataset as the in 
vitro assays did not fulfill the sample size requirement (see criterion 3). For 160 in vitro assays for 0% of the 
individual experiments the Hill models appeared to have the best fit. These 160 individual in vitro assays 
covered a total of 9152 data records in the initial dataset. These in vitro assays were removed from the 
dataset. 

 

The resulting data were combined with data on physicochemical parameters that drive mobility and persistence (Kow, 

Koc, molecular weight, degradation half-life (in days), and vapor pressure (in mmHg at 25 °C)) from EPISuite, resulting 

in a dataset of 281,369 data records, covering 6054 chemicals and 1627 in vitro assays.  
 

2) Since low solubility of a compound frequently affects the actual exposure in a toxicity test (generally leading 
to underestimation of its effect) (Groothuis et al., 2015), poorly soluble chemicals (i.e. with a solubility in 
μM below the corresponding AC50) were removed from the data set (Jonker & Van der Heijden, 2007). 
Solubility (Log10 M (molar)) was estimated using the WSKOWWIN v1.42 model. Substances with such low 
solubility often also have a high hydrophobicity and are for that reason not mobile and thus most likely not 
meeting the PMOC criteria (See introduction; log Koc < 4 (pH = 4.9), degradation rate in fresh water (at 12°C) 
over 40 days).   

Truncating the data based on solubility resulted in a dataset of 5426 chemicals for 1588 in vitro assays, covering 
162,743 data records or individual concentration-response curves. This selection of data based on defined criteria 
resulted in 43% reduction of the data records. 

3) All in vitro toxicity tests for which less than 50 data entries (tested chemicals) were available were 
disregarded, to ensure an unbiased modelling practice. This cut-off of 50 data entries was based on the fact 
that 30% of the data were used as a test dataset, and a minimum of 30 data entries are required as 
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assumptions about the population distribution are not useful if the sample size does not exceed 30, since 
the sampling distribution approximates the standard normal distribution (Kwak & Kim, 2017).  

Truncating the data based on this criterion resulted in a dataset of 5381 chemicals for 603 assay endpoints covering 
a smaller number of in vitro toxicity tests, covering 148,271 data records. This selection of data based on defined 
criteria resulted in 9% reduction of the data records. 
 
The resulting data were combined with data on nested functional groups (structural fragments), extracted from the 
OECD QSAR Toolbox. Data were collected based on CAS number of chemicals. The Organic Functional Groups (OFG) 
system is designed to introduce some classification and systematisation of the various structural fragments in organic 
chemicals from a large database, and identify structurally similar chemicals. In total, 498 organic functional groups 
or structural fragments can be identified (European Chemicals Agency, 2014). For 7,771 chemicals, 396 structural 
fragments were identified in the formatted dataset based on ToxCast data, including hundreds of different dummy-
variables (0-1). Combining the three datasets (i.e. the toxicity dataset, the dataset with physicochemical parameters 
and the dataset containing functional groups) and applying the three criteria (based on the Hill model being the 
‘winning’ model, chemical solubility, and sample size) resulted in a final dataset of 5,114 chemicals, covering over 
139 thousand individual AC50 values for 603 endpoints for in vitro assays. 4,780 of these chemicals are organic, of 
which 4,622 are mobile (Log Koc below 4) and 1119 are persistent (half-life more than 40 days, BIOWIN3 score below 
2.5) and mobile (PMOCs). Combining and formatting the datasets in the end resulted in a dataset with a broad 
coverage of chemicals (in terms of functional groups and physicochemical descriptors) from which approximately 
20% consists of PMOCs. More information on the applicability domain of the models can be found in paragraph 2.7.  
 

2.2 Data quality 

Due to the diverse assay technologies and study designs deployed in the ToxCast database, a highly generalized and 

robust (median and median absolute deviation vs mean and standard deviation) set of calculations were performed 

to obtain robust AC50 values (U.S. Environmental Protection Agency (EPA), 2014). However, the ToxCast program has 

acknowledged that false positive and negative hit calls are possible using the automated methods, and has thus 

added a processing step to assign “flags” or  “warnings” to the data (Ryan & Becker, 2017) related to a series of 

quality criteria such as ‘noisy data’, ‘less than 50% efficacy’, and ‘borderline active result’. Ryan and Becker (2017) 

describe possible flags in the ToxCast dataset that may be considered when analyzing a list of possible results. 

However, they also note that their assignment is automated, and prone to error. Therefore, it may not be the best 

practice to set hard filters based on these flags. Because of this, although multiple flags have been found in the data 

(Figure 2), these were not used as criteria in formatting the data. In the figure below, the total number of registered 

flags within the formatted (training) dataset are shown.  
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Figure 2: Frequency (number of data records out of 139,364) of flags included in the formatted dataset. 

 

In total, for 58,548 (40.1%) individual data records out of 139,364 data records, no flags were found. For 53,709 data 

records (36.8%) from individual biochemical experiments the efficacy was below 50%, for 27,194 data records 

(18.6%) only the highest concentration was above the baseline, for 24,577 (16.8%) data records were borderline 

active, and for 20959 data records (14.4%) the hit-call was potentially confounded by overfitting. The sum of the 

classes exceed the total number of records as records can be flagged for multiple criteria. Overall, although a large 

sum of flags have been reported in the data, these flags are equally distributed over non-PMOCs and PMOCs, so it is 

safe to assume that the models produced in the research presented here are based on equally ‘bad’ data for both 

chemical groups. 

 

For all individual concentration-response curves the width of the confidence interval of the AC50 (in log units) is 

reported in the ToxCast database. These confidence intervals are divided by the corresponding (mean) AC50 to be 

able to compare these values across all endpoint for in vitro assays and chemicals. Below, a histogram depicting these 

ratios for all individual experiments in all individual in vitro assays in which the Hill model is the model with the best 

fit is shown (Figure 3). On average, the confidence interval of the data is 5% of the Log AC50. 95% of all confidence 

intervals (based on 139,364 individual data records) lies within 1.5 times the log AC50. Although this may sound like 

a large average deviation, this deviation may be negligible when prioritizing chemicals based on a classification using 

AC50 values or based on threshold levels, which may deviate multiple magnitudes.      
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Figure 3: histogram depicting the ratio between the AC50 and its confidence interval. 

 

 

2.3 Grouping of in vitro assays 

Each data record in the ToxCast database has a distinct set of annotations, i.e., descriptive features that capture a 

particular aspect of the assay endpoint and in vitro assay used. Most of the 38 annotations are related to at least one 

other annotation (Figure 4). Since the formatted dataset used in the present research comprised a large number of 

in vitro assays, these were classified based on type and characteristics, such as intended target family, technological 

target type, assay design type, signal direction, target organism, and target tissue. The type and characteristics of the 

in vitro assays in the ToxCast dataset are described below (Phuong et al., 2014). These are equal to the annotations 

in the formatted database.  

In vitro assays capture the effects of chemicals on different types of targets related to biological processes (Figure 4). 

The intended target family captures the objective (qualitative) form of the intended target (the representative genetic 

family or biological process of the target (e.g., cell cycle, neurodevelopment or DNA binding)), while the technological 

target type provides the measured (quantitative) form of the target used in the experimental methods (e.g., 

embryonic development, electrical activity, RNA production or molecular messenger) (Phuong et al., 2014). The assay 

design type of an in vitro assay is related to the technology used to translate a biological or physical process to a 

detectable signal (e.g. enzyme reporter or growth reporter), and the signal direction corresponds to the expected 

direction of the detected signal in relation to the negative control (either gain or loss) (Phuong et al., 2014) (Figure 

4). 
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Figure 4: The assay annotation structure. The 38 annotations can be grouped into (among other things) (A) assay information, (B): technology 

information, (C): detection information, (D): format information, I design information, (F) target information, and (G) analysis information 
(Phuong et al., 2014).  

 

Below, pie charts (Figure 5) show the relative frequencies of individual targets within set categories, including all 

intended target families, technological target types, assay design types, signal direction, and organism-tissue type. In 

vitro assay endpoints included in the formatted dataset are equally spread out over 49 intended target families 

(Figure 4), while most in vitro assays in the formatted dataset have a protein (41%) or RNA (40.3%) technological 

target type. The majority of in vitro assays have an assay design type related to either inducible reporters (48%), or 

binding reporters (23.1%). A slight majority of all in vitro assays have a loss signal direction (54.1%), and most in vitro 

assays are based on human (86.7 %) cells and mammalian liver cells (47.6 %). Human liver cells account for 47.3% of 

all data records. Ideally, an equal composition of annotations is included in the training dataset in the modelling 

process, as sub setting data based on an unequal distribution of annotations leads to bigger and smaller datasets, 

and model performance based on smaller datasets may be lower when applying the model on chemicals outside the 

training dataset.  
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Figure 5: Pie charts showing the relative frequencies of targets withing categories of in vitro assays, based on intended target family, technological 

target type, assay design type, signal direction, organism and tissue.  
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2.4 Random Forest model 

Random forest is a supervised learning algorithm using an ensemble of decision trees, capable of performing both 
regression and classification tasks. The algorithm continually randomly selects a subset of physicochemical 
descriptors or structural fragments/functional groups and subdivides the data based on these descriptors until a full 
tree is developed and analyzed for predictive power using these physicochemical descriptors or structural 
fragments/functional groups. The algorithm arrives at the best explanatory properties by always prioritizing the 
decision trees with the properties that perform best to explain toxicity. The randomization process reduces bias and 
decreases variance between and within trees. Random forest is, aside from its ability to build accurate classifiers, an 
often used objective method for feature importance assessment and selection. To get more insight into toxicity of 
chemicals (including PMOCs), random forest analyses were performed based on physicochemical characteristics and 
functional groups, taking toxicological endpoints (log10-transformed AC50) as a response variable for each toxicity test 
individually.  
 
A fixed number of 5000 decision trees was used in the random forest analyses and the top physicochemical 
descriptors or top 10 functional groups explaining the most variance in AC50 were reported. Being a non-parametric 
method, Random forest analysis does not require the response variable and/or the predictors to be normally 
distributed.  
 
The predictive power of variables within a Random Forest analysis is determined by calculating the %IncMSE (increase 
in mean-squared error of the predicted values). This is a measure for the importance of the feature; if the values of 
the feature are randomized in the same trees, what would be the drop in accuracy. This is the most robust and 
informative value within the analysis. This value is calculated by comparing the MSE when dropping explanatory 
variable (j) to overall (initial) MSE0: 

 

%𝐼𝑛𝑐𝑀𝑆𝐸 =  
(𝑀𝑆𝐸𝑗 − 𝑀𝑆𝐸0)

𝑀𝑆𝐸0

∗ 100%   [1] 

 
where a higher number indicates a better prediction.  

A disadvantage of any machine learning model, including random forest, is that it is so complicated that it can only 
be applied as a computer model. It is not intuitively easy to interpret. Additionally, the random forest output does 
not include quantitative regression coefficients and therefore does not provide insight into the magnitude or 
direction of the observed effect in an in vitro assay. Additional multiple linear regression analyses were thus 
performed to provide insight into the magnitude and direction of the relationship between toxicity (biological activity) 
and continuous variables (i.e. physicochemical descriptors or functional groups).  

 

2.5 Multiple linear regression model 

Additional QSARs for toxicity (next to the random forest models) were derived by fitting the following conceptual 

model to the formatted data:  

 

𝑦 =  𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + ⋯ + 𝛽𝑛𝑥𝑛  [2] 

 

in which β1 to βn represent the regression coefficients associated with the 1st to nth X1 to Xn chemical property (either 

a physicochemical descriptor or a functional group), and y represents the toxic potency on an endpoint in an in vitro 

assay (log10-transformed AC50). To enable comparison of results between in vitro assays and in vitro assay groups, 

prior to the derivation of the multiple linear regression model, the response variable (AC50) was standardized using 

the z-score: 
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𝑧𝑖 =  
𝑥𝑖 − 𝑥̅𝑖

𝑠𝑖

   [3] 

 

which transforms the overall toxicity mean (𝑥̅𝑖) to 0 and the corresponding standard deviation (𝑠𝑖) to 1 (Eriksson et 

al., 2003). Usually the values in a z-score are within -3 to 3. We derived multiple regression models separately for 

each in vitro assay and in vitro assay group, that incorporated the full set of physicochemical parameters and included 

at least 50 data records (see 2.1), using the lm function in R, Ver. 4.1.1 (Team, 2021). Uncomplicated models allow 

for easier interpretation and are for that reason more suitable for screening‐level impact assessments. Therefore no 

interactions or quadratic functions were included in model derivation. Afterwards, the most influential predictors 

(physicochemical parameters) of toxicity (AC50) were identified using the Relaimpo package R statistics, Ver. 4.1.1. 

 

2.6 Model evaluation 

Both the results from the Random Forest analysis and the multiple linear regression analysis were evaluated by 

plotting predicted effect concentrations against the observed effect concentrations, taking the aforementioned 

functional groups as explanatory variables, for all individual in vitro assay endpoints and in vitro assay groups, 

separately. 70% of the data were used in a training dataset and the remaining 30% served as a test dataset. These 

data were randomly selected. The models were evaluated using the coefficient of determination (R2) for the training 

set(see Equation 4): 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 −  𝑦̅)2𝑛
𝑖=1

 [4] 

 

where the R2 is calculated as 1 – residual sum of squares (RSS) and the total sum of squares (TSS), 𝑦𝑖  is the observed 

AC50 for compound I, 𝑦̂𝑖  is the predicted AC50 for compound I, and 𝑦̅ is the average AC50 in the training set. The R2 

statistics explains the variance in the response variable by the explanatory variable(s). Over the years, there has been 

ample discussion on the R2 threshold above which a model can be considered a good predictive model. In this study, 

R2 values of 0.75, 0.50, or 0.25 for response variables will be described as substantial, moderate or weak, respectively, 

according to Hair et al. (2013) and Sarstedt et al (2021) (Hair et al., 2013; Sarstedt et al., 2021). The predictive power 

of the model is evaluated by calculating the Q2 for the test dataset:  

 

𝑄2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑒𝑥𝑡)2𝑛

𝑖=1

∑ (𝑦𝑒𝑥𝑡 − 𝑦̅𝑒𝑥𝑡)2𝑛
𝑖=1

 [5] 

 

where the Q2 is calculated as 1 – residual sum of squares (RSS) and the total sum of squares (TSS), 𝑦𝑖  is the observed 

AC50 for compound I, 𝑦̂𝑖  is the predicted AC50 for compound I, and 𝑦̅ is the average AC50 in the training set. The Q2 

statistic reflects predictive relevance, and measures whether a model has predictive relevance or not. Q2 values 

above zero indicate that your values are well reconstructed and that the model has predictive relevance.  

 

2.7 Applicability domain of the models  

The domain of applicability is an important concept in QSARs. It allows to estimate the uncertainty of the prediction 

of a particular molecule based on how similar it is to chemicals used to build the model (Weaver & Gleeson, 2008). 

In this case, the applicability domain of the developed QSAR is the range of physicochemical properties (related to 

PMOC-properties; mobility and persistence), and the structural information (based on structural 

fragments/functional groups) on which the Random Forest model and the multiple linear regression model have 



 
 

 

BTO 2023.086 | December 2023  A deeper understanding of PMOC toxicity 18 

been developed. This defines the properties of any new chemicals for which the model is applicable to make 

predictions (Table x). Any predictions on new chemicals that have deviating properties, can be incorrect. The 

applicability domain of the three most important physicochemical descriptors related to persistence and mobility are 

described in the paragraphs below.    

 

Table 1: Source of physicochemical properties included in the modelling process.  

Property Source 

Octanol-water partitioning coefficient (Kow)  EPI SuiteTM (experimentally based and estimated through 

QSARs)  Soil sorption coefficient (Koc)  EPI SuiteTM (experimentally based or based on MCI-method) and 

OPERA  

Molecular weight EPI SuiteTM 

Biodegradation rate (half life in days) OPERA (estimated half life in days based on PaDel descriptors) 

Vapor pressure EPI SuiteTM 

Functional groups Organic functional groups via OECD QSAR Toolbox 

 

 

2.7.1 Soil sorption coefficient (mobility) 

The soil sorption coefficient (Koc) of chemicals was included as an explanatory variable in both the Random Forest 

model and the multiple linear regression model. In the formatted dataset (training dataset), we have included log Koc 

values taken from two separate sources; experimental and predicted values from EPI Suite™ (KOWWIN v1.68) 

(EPISKOC_EXP and EPISKOC_MCI, respectively) (US EPA, 2022), and predicted values from OPERA (OPERAKOC) 

(Mansouri & Williams, 2017). While EPI Suite predicts log Koc values based on the Randiç Molecular Connectivity Index 

(Randić, 2001), the OPERA model predicts log Koc values based on PaDEL descriptors (1D, 2D, 3D descriptors and 

fingerprints) (Yap, 2011). If no experimental data were available for a compound (this was the case for 72125 

chemicals (49.4%)), the log Koc based on the molecular connectivity index was chosen. If no data were available on 

log Koc-MCI, the log Koc from OPERA was taken instead. Figure 6 shows the range of log KOCs of chemicals included in 

the formatted dataset, separated by data source and method. The average log Koc found in the formatted dataset is 

2.66 with 95% of the log Koc falling within the 0.82 – 4.82 range, implying that the majority of the chemicals in the 

formatted dataset is mobile (log Koc < 4; (Neumann & Schliebner, 2019)).  
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Figure 6: Histogram depicting the range/ applicability domain of log Koc within the formatted dataset.  

 

2.7.2 Octanol-water partitioning coefficient (mobility/bioaccumulation/bioavailability) 

The octanol-water partitioning coefficient (Kow) of chemicals was included as an explanatory variable in both the 

Random Forest model and the multiple linear regression model. In the formatted dataset (training dataset), we have 

included log experimental and predicted Kow values from EPI Suite™ (KOWWIN v1.68) (EPISKOW_EXP and 

EPISKOW_Pred, respectively) (US EPA, 2022). EPI Suite uses a “fragment constant” method to predict Kow. In the 

“fragment constant” method, a molecule is divided into fragments (atoms or larger structural fragments/functional 

groups) and the assigned coefficient values for each fragment are added to give the Kow estimate, which is reported 

as a log. If no experimental data were available for a compound (which was the case for 3044 out of 5114 individual 

chemicals), the estimated Kow was taken as a substitute. Figure 7 shows a histogram depicting the range of log Kow of 

chemicals included in the formatted dataset, separated by data source and method. The average log Kow found in the 

formatted dataset is 2.16, with 95% of the log Kows falling within the -0.43 – 4.6 range. Although there has not been 

a scientific consensus on threshold values for hydrophobicity/hydrophilicity, like with Koc, The compounds used in the 

formatted dataset can be considered relatively hydrophilic (Log Kow < 5).  
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Figure 7: Histogram depicting the range/ applicability domain of log Kows within the formatted dataset. 

 

2.7.3 Biodegradation rate (persistence) 

The biodegradation rate (reported in half-life in days) of chemicals was included as an explanatory variable in both 

the Random Forest model and the multiple linear regression model. In the formatted dataset (training dataset), we 

have included biodegradation (half-life in days), estimated through OPERA. The OPERA model predicts 

biodegradation rates based on PaDEL descriptors (1D, 2D, 3D descriptors and fingerprints) (Yap, 2011). Figure 8 

shows a histogram depicting the range of half-lives of chemicals included in the formatted dataset. The average half-

life found in the formatted dataset is 0.92 = 8.3 days, with 95% of the half-lives falling within the 0.52 – 1.99 (3.34 – 

98 days) range, implying that the chemicals in the formatted dataset are equally distributed with respect to their 

biodegradability (persistent compounds have a degradation half-life in fresh or estuarine water at 12 °C that is higher 

than 40 days (Neumann & Schliebner, 2019)).  
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Figure 8: histogram depicting the range/ applicability domain of half lives for chemicals within the formatted dataset. 

 

2.7.4 Vapor pressure and molecular weight  

Additional to the PM-parameters included above, the vapor pressure and molecular weight of chemicals were 

included as an explanatory variable in both the Random Forest model and the multiple linear regression model. In 

the formatted dataset (training dataset), we have included vapor pressure taken from EPI SuiteTM (MPBPWIN) and 

molecular weight from EPI Suite. The MPBPWIN model predicts vapor pressure (in mmHg at 25°C) based on molecular 

fragments. Figure 9A (left) shows a histogram depicting the range of the vapor pressure of chemicals included in the 

formatted dataset. The average log-transformed vapor pressure found in the formatted dataset is  -6.74, with 95% 

of the vapor pressures falling within the -14.82 – -0.69 range. Figure 9B (right) shows a histogram depicting the range 

of the molecular weight of chemicals included in the formatted dataset. The average log-transformed molecular 

weight found in the formatted dataset is  2.36 (261.25 grams per mole), with 95% of the vapor pressures falling within 

the 2.09 – 2.63 (123.16 – 424.39 grams per mole) range. 

 



 
 

 

BTO 2023.086 | December 2023  A deeper understanding of PMOC toxicity 22 

 

Figure 9: histogram depicting the range/ applicability domain of vapor pressure (left) and molecular weight (right) for chemicals within the 
formatted dataset.  
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3 Results 

3.1 Toxicity 

In Figure 10, the distribution of all toxicity values (AC50s) across all in vitro assays and in vitro assay types is shown, 

for both chemicals labeled as PMOCs as well as other chemicals. The average AC50 – covering all in vitro assays and 

in vitro assay types – for PMOCs was 1.73 log10 μM (= μmol per liter) (median: 1.33, S.D.: 1.51), or 0.937 log10 mg/L 

(median: 0.67, S.D.: 0.906), while the average AC50 for non-PMOCs was 1. 46 log10 μM (median: 1.32, S.D.: 3.6), or 

0.85 log10 mg/L (median: 0.69, S.D.: 2.48). Overall, AC50s (in both μM and mg/L) associated with PMOCs were higher 

than AC50s associated with non-PMOCs (p < 0.05, one-sided (upper-bound) t-test), giving a first indication of lower 

toxicity of PMOCs, compared to non-PMOCs, as was concluded in the previous BTO report on PMOC toxicity (BTO 

2023.60). However, the PMOC-group consisted of a relatively small number of individual chemicals (n = 1116), while 

the non-PMOC-group consisted of a large, diverse group of chemicals (n = 3995), possibly eliciting a large variety of 

effects. Additionally, no differentiation was made between in vitro assay types, covering a vast amount of different 

effects.  

 

 
Figure 10: distribution of log-transformed endpoints (AC50s in μM) for PMOCs, and for chemicals not labeled as PMOCs as a histogram (left) and 
boxplot (right). 

 

In the figure and analysis above, no distinction was made between in vitro assays and – therefore – endpoint types. 

To enable comparison of results between in vitro assays and in vitro assay groups, prior to the derivation of the 

multiple linear regression model, the response variable (AC50) was standardized to show relative toxicity and the 

relative position of the compound within the distribution of toxicities for each in vitro assay (see Equation 3). In Figure 

11, the distribution of all z-transformed toxicity values (AC50s) across all in vitro assays and in vitro assay types is 

shown, for chemicals labeled as PMOCs (see paragraph 2.1), and other chemicals (non PMOCs). A z value represents 

the deviation of AC50s from the mean/average of all toxicity data per individual in vitro assay endpoint, expressed in 
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number of standard deviation units. Although the median of z values for the PMOC and non PMOC group may differ, 

the geometric average of all z values should be 0 (equal to the true average of all data). The average z value – 

standardized based on all individual in vitro assays – for PMOCs was 0.031 (median: -0.23, S.D.: 0.98), which implies 

that PMOCs have a slightly higher average AC50 value compared to all toxicity data for all individual in vitro assay 

endpoints. However, please note that z values for PMOCs may differ across individual in vitro assay endpoints, i.e. 

PMOCs may be less toxic when looking at – for instance – neurodevelopment, but may appear more toxic when 

looking at cytotoxicity. The average AC50 for non-PMOCs was -0.0054 (median: -0.24, S.D.: 1.00), implying that non-

PMOCs may – when including all endpoints and assay types – be slightly more toxic than PMOCs in most in vitro 

assays. This was confirmed by a one-sided (upper-bound) t-test (p < 0.05).  

 

 

  
Figure 11: distribution of log-transformed endpoints (z values) for PMOCs, and for chemicals not labeled as PMOCs as a histogram (left) and 

boxplot (right) 

 

In the random forest and linear regression analyses the functional groups/structural elements and physicochemical 

descriptors taken as explanatory variables were analyzed separately, as the structural elements and topological 

features of compounds in itself may be strongly correlated with physicochemical descriptors (Cocchi et al., 1999).   
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3.2 Structural fragments/functional groups 

3.2.1 Random Forest 

In general, the Random Forest analysis for all 603 in vitro assays separately, including only the functional groups as 

explanatory variables, explained on average -0.96% (median: -0.95%, S.E.: 0.004) of all variance in the toxicity data 

for both PMOCs and non-PMOCs (AC50s). The highest percentage of variances explained were determined for 

TOX21_PXR_viability1 (9.55%), while the lowest percentage variance explained by the Random Forest model were 

found for NVS_GPCR_rAdra2_NonSelective2 (-7.97%). For almost 12% (11.9% - 72 assay endpoints) of all in vitro assay 

endpoints organotin was identified as the most important structural fragment for the prediction of toxicity in the 

Random Forest model, followed by steroids (8.5% - 52 assay endpoints), and acetals (3.1% - 19 assay endpoints). 

Chemicals including an organotin fragment included covered only 1.9% of the complete formatted database, 

including only 15 (out of 5114) compounds, which may have been very toxic, and covering only in vitro assay endpoint 

for which a small dataset was available. A total of 114 chemicals included a steroidal structural fragment (covering 

4.7% of the total dataset) and a total of 55 chemicals included an acetal (covering only 0.8% of the complete 

formatted dataset). This shows that the distribution of chemicals within each individual dataset for each assay 

endpoint may differ considerably and may disproportionally steer the final conclusion. However, when weighing 

assay endpoints based on sample size of their respective datasets, organotin was again identified as the most 

structural fragment, with assay endpoint datasets for which organotin was identified as the most predictive structural 

fragment for toxicity covering over 16% of all data. Steroids again followed as the second most important structural 

fragment for the prediction of toxicity (assay activity) with a total coverage of 9.2% of all formatted data, while 

dithiocarbamates (and not acetals) were identified as the third most important predictor of assay activity, covering 

6.2% of the complete formatted dataset.          

 

Figure 12 shows the predicted effect concentrations (log AC50s) – predicted by both Random Forest and multiple 

linear regression - plotted against the observed effect concentrations. taking the aforementioned functional groups 

as explanatory variables. In total, 65.6% of all individual predicted AC50s were within a factor of 5 of the observed 

AC50s; 17% of the predicted datapoints were more than a factor five below the observed datapoints 

(underestimated), and 17.3% were more than a factor five above the observed data (overestimated), which can be 

considered high. None of the predicted datapoints were a perfect fit, which indicates that no overfitting of the model 

occurs. This occurs when the model is too complex, when there are an overly large number of parameters compared 

to the number of observations. In that case, the model will perform well on training data, but poorly on test data. 

Although no overfitting in the model takes place, the accuracy of the random forest model, when including functional 

groups as explanatory variables, is very low.  

 

3.2.2 Multiple linear regression analysis 

In general, the multiple linear regression analysis for all 603 in vitro assays, separately, including only the structural 

fragments/functional groups as explanatory variables, explained on average 51.44% (median: 54.48%, S.E.: 0.042%) 

of all variance in the toxicity data (AC50s), based on the adjusted R2. The highest % of variances explained were 

determined for a specific in vitro assay focusing on cytotoxicity: BSK_Sag_PBMCCytotoxicity_up3 (100%). However, 

as fitting of the multiple linear regression model is based on only 33 data entries, this high predictability is likely due 

to overfitting of the model. The lowest % variance explained by the multiple linear regression model was found for 

Tanguay_ZF_120hpf_PE_up4 (an in vitro assay focusing on embryonic vascular disruption) (-2.4%). Figure 12 shows 

 

1 https://comptox.epa.gov/dashboard/assay-endpoints/TOX21_PXR_viability 

2 https://comptox.epa.gov/dashboard/assay-endpoints/NVS_GPCR_rAdra2_NonSelective 

3 https://comptox.epa.gov/dashboard/assay-endpoints/BSK_SAg_PBMCCytotoxicity_up 

4 https://comptox.epa.gov/dashboard/assay-endpoints/Tanguay_ZF_120hpf_PE_up 

https://comptox.epa.gov/dashboard/assay-endpoints/TOX21_PXR_viability
https://comptox.epa.gov/dashboard/assay-endpoints/NVS_GPCR_rAdra2_NonSelective
https://comptox.epa.gov/dashboard/assay-endpoints/BSK_SAg_PBMCCytotoxicity_up
https://comptox.epa.gov/dashboard/assay-endpoints/Tanguay_ZF_120hpf_PE_up
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the predicted effect concentrations (Log10 AC50s) plotted against the observed effect concentrations, based on the 

multiple linear regression model, taking the functional groups as explanatory variables (Equation 2). In total, 86.1% 

of all individual predicted AC50s lied within a factor 5 of the observed AC50s; 7.1% of the predicted datapoints were 

more than a factor five below the observed datapoints (underestimated), while 6.8% were more than a factor five 5 

above the observed data (overestimated). 0.85% of the predicted datapoints were a perfect fit, which may indicate 

overfitting of the model. 

 

 

 

Figure 12: Predicted toxicity (AC50 in μM) in the training dataset by the multiple linear regression model and the Random Forest model versus 
observed toxicity, based on structural fragments/functional groups, clustered per individual in vitro assay, for the training dataset only. The 

middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 and 5:1 ratio. 
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The predictive power of the individual multiple linear regression models for both the training dataset and the test 

dataset were evaluated by comparing predicted AC50s with observed (experimental) values (Figure 13). Here, we see 

that 82.22% of all predicted data points were within a factor of five of the experimental AC50s. 6.11% of the data 

points were overfitted (û-u=0; the difference between the predicted value and the observation is 0), 9.14% 

underestimated (u/5 > û; ; the predicted value is more than five times lower than the observation), and 9.05% 

overestimated (u*5 < û; the predicted value is more than five times higher than the observation). When we solely 

look at the test dataset, we see that 61.6% of all data records were within a factor five of the experimental AC50s 

(training: 87%), 19.7% of the data records in the test dataset were underestimated (training: 7.06%), 18.75% of the 

data records in the test dataset were overestimated (training: 6.8%), and 0.025% of the data records in the test 

dataset were overfitted (training: 7.04%). Overall, 71.6% of the variation in AC50 values in the training dataset is 

explained by the linear regression model (R2), when excluding interaction terms between the explanatory variables 

(Figure 13). Unfortunately, it was not possible to include interaction terms in the models, as the datasets are too 

limited to cover all possible combinations of functional groups/structural elements. When the model is applied to the 

test data set, a negative Q2 was calculated, implying that functional groups/structural fragments – including all 

multiple linear regression models for all individual in vitro assays – on average did not perform well in predicting 

toxicity for chemicals outside the training dataset. However, large differences exist in the predictive power of the 

models across in vitro assays.  

 

 

Figure 13: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed (experimental) toxicity, based on structural 
fragments/functional groups and topological parameters, for both the training dataset and test dataset. The middle dashed line represents the 

1:1 ratio. The outer dashed lines represent the 1:5 and 5:1 ratio. 
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In the figure below, the adjusted R2, from the multiple linear regression model, based on structural 

fragments/functional groups (Figure 14), is plotted against the variance explained (%) by the Random Forest model 

modelled for all in vitro assays separately. The overall correlation between the R2 from the multiple linear regression 

analysis and the variance explained by the Random Forest model is very low, which implies that the correlation 

between functional groups and toxicity can be better described by linear regression (taking into account all functional 

groups and chemicals) than by Random Forest, possibly omitting any correlation between structural 

fragments/functional groups and chemicals. 

 

 

Figure 14: The adjusted R2, from the multiple linear regression model, based on organic structural fragments/functional groups, plotted against 

the variance explained (%) by the Random Forest model, based on aforementioned descriptors, modelled for all in vitro assays separately. The 
dashed line represents the 1:1 ratio. 

 

 

3.3 Physicochemical descriptors 

3.3.1 Principal component analysis 

Principal component analysis (PCA) was conducted to explore the characteristics of the physicochemical descriptors 

(log Koc, log Kow, biodegradation rate, vapor pressure, and molecular weight) prior to two analyses (Random Forest 

Analysis and multiple linear regression analysis), as these descriptors were continuous (in contrast to the binary 

structural fragment descriptors). The PCA was performed based on the scaled values of the six variables, i.e., the five 

physicochemical descriptors, and the log-transformed AC50 values. 

Prominent principal components (PCs) emerged, with PC1 explaining 30.98%, PC2 explaining 24.77%, and PC3 

explaining 16.69%, as shown in Figure 15. The score plots did not indicate any grouping among the data sets or 

differences between PMOCs and non-PMOCs groups, suggesting the six variables did not have enough information 

to be categorized into multiple groups. The biplot with PC1 and PC2 (Figure 15A) indicates that the molecular weight 

was positively associated with PC2. The other five factors had negative associations with PC2; the log KOC and log KOW 

were negatively related to PC1, and the log-transformed AC50 values were positively associated with PC1, together 

with the vapor pressure and the biodegradation rate. The results of PCA revealed how the six variables influenced 

each principal component and that a part of the variables had similar information. Further analysis would be required 

to investigate more precise relationships between the variables.   
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Figure 15: Principal component analysis (PCA) biplots based on PC1 and PC2 (A) and PC2 and PC3 (B). Each data point corresponds to a data 
record consisting of the six types of data. The colors of data points represent the chemical groups (PMOCs or no-PMOCs), according to the 

classification described in section 2.1. 

 

3.3.2 Random Forest 

In general, the Random Forest analysis for all 603 in vitro assays separately, including the five most important 

predictive physicochemical descriptors (log Koc, log Kow, biodegradation rate, vapor pressure and molecular weight) 

as explanatory variables resulted in explaining 15.78% (median: 14.37, S.E.: 0.03) of all variance in the toxicity data 

(AC50s). The highest percentage of variances explained were determined for OT_ER_ERaERa_04805 (nuclear receptor 

type) (83.98%), while the lowest percentage variance explained by the Random Forest model were found for 

NVS_ENZ_hEphA1_Activator6 (-52.78). Figure 16 shows the predicted effect concentrations (log10 AC50s) – predicted 

by both Random Forest and multiple linear regression - plotted against the observed effect concentrations, based on 

Random Forest analysis, taking the aforementioned five physicochemical parameters as explanatory variables, for 

both signal directions separately. In total, 93% of all individual predicted AC50s were within a factor 5 (which equals 

to approximately 5% of the complete toxicity data range) of the observed AC50s; 2.4% of the predicted datapoints 

were more than a factor five below the observed datapoints (underestimated), while 4.6% were more than a factor 

five above the observed data (overestimated). 0.05% of the predicted datapoints were a perfect fit, which may 

indicate overfitting of the model. 

 

3.3.3 Multiple linear regression analysis 

In general, the multiple linear regression analysis, including the five most important predictive physicochemical 

descriptors (log Koc, log Kow, biodegradation rate (half-life in days), vapor pressure and molecular weight) as 

explanatory variables resulted in explaining 14.5% (median: 12%, S.E.: 0.01%) of all variance in the toxicity data 

(AC50s), based on the adjusted R2. The highest % of variances explained were determined for an in vitro assay focusing 

on a background reporter gene: TOX21_GR_BLA_Agonist_ch1 (62.6%), while the lowest % variance explained by the 

 
5 CompTox Chemicals Dashboard (epa.gov) 

6 CompTox Chemicals Dashboard (epa.gov) 

https://comptox.epa.gov/dashboard/assay-endpoints/OT_ER_ERaERa_0480
https://comptox.epa.gov/dashboard/assay-endpoints/NVS_ENZ_hEphA1_Activator
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multiple linear regression model was found for another in vitro assay focusing on a background reporter gene: 

ATG_M_32_CIS_dn (-15%). Figure 16 shows the predicted effect concentrations (log10 AC50s) plotted against the 

observed effect concentrations, based on the multiple linear regression model, taking the aforementioned five 

physicochemical parameters as explanatory variables (Equation 2). In total, 69% of all individual predicted AC50s lied 

within a factor 5 of the observed AC50s; 15.1% of the predicted datapoints were more than a factor five below the 

observed datapoints (underestimated), while 15.9% were more than a factor five above the observed data 

(overestimated). None of the predicted datapoints were a perfect fit. 

 

Based on the total dataset, linear regression analysis (R2s) had a lower predicting power compared to the random 

forest analyses for the same toxicity tests. This indicates that there probably is no linear relationship between 

physicochemical descriptors and the response variable as the modelling exercise was based on single linear responses 

only, disregarding any interaction between parameters or non-linear responses. The linear regression coefficients for 

the 603 analyzed in vitro assays, taking standardized AC50 values as response variables, were negative for log Koc, log 

Kow, and molecular weight, with median regression coefficients of -0.04, -0.03, and -0.002 respectively, based on the 

absolute values (Figure 17). The median regression coefficients for log Kow, log Koc, and biodegradation rate all 

significantly differed from zero (p-value < 0.05; One sample t-test). Only the median value of regression coefficients 

for biodegradation rate (half-life in days), and vapor pressure were positive (0.44 and 0.02, respectively), however 

median values for both vapor pressure and molecular weight did not differ significantly from zero (p > 0.05; One 

sample t-test). Hence, in general, the majority of the investigated physicochemical properties were inversely related 

to toxicity (expressed as AC50, with a higher AC50 indicating a lower toxicity and a lower Koc/Kow indicating a higher 

mobility), albeit to varying degrees. However, biodegradation rate (half-life in days) in general was proportionally 

related to AC50 values, implying that more persistent chemicals (higher half-life) tend to be less toxic (higher AC50). 

These observations with respect to mobility and persistence are in line with conclusions drawn in the previous BTO-

report on PMOC toxicity.   

 

 
Figure 16: Predicted toxicity (AC50 in μM) by the multiple linear regression model and the Random Forest model versus observed toxicity, based 
on five physicochemical parameters (Log Kow, Log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per individual in 
vitro assay. The dashed lines represent the 1:5 line. 
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When standardizing the physicochemical descriptors by subtracting the values by the mean value per toxicity test 

and dividing the result by the standard deviation, rescaling the data to have a mean of zero and a standard deviation 

of one, we see a similar pattern, albeit more spread out than the unstandardized, absolute values . The influence of 

physicochemical descriptors that normally cover a large range of values (such as molecular weight, boiling point and 

biodegradation rate) become more apparent, as the values on the y-axis now inform us about the change in response 

(toxicity) when increasing the physicochemical descriptor by one standard deviation (i.e., a relative increase in 

descriptor value, rather than an absolute increase in descriptor value). 

 

 

 
Figure 17: Boxplots depicting the distribution of regression coefficients (minimum value, 25th percentile, median value, 75th percentile and 

maximum value) for vapor pressure (in mmHg), molecular weight (in g/mol), log octanol-water partition coefficient (log Kow), log sorption 
coefficient to organic carbon (log Koc), boiling point (in °C), and biodegradation rate (half-life in days) resulting from the multiple linear regression 
analysis for 603 in vitro assays. ***; μ ≠ 0, p < 0.001, **; μ ≠ 0, p < 0.01, *; μ ≠ 0, p < 0.05, -; μ = 0, p > 0.05. Parameters with significantly similar 

distributions of regression coefficients were assigned a similar letter.  

 

In the figure below, the adjusted R2, from the multiple linear regression model, based on the five physicochemical 

descriptors (log Koc, log Kow, vapor pressure, molecular weight, and biodegradation (half-life in days)) (Figure 18), is 

plotted against the variance explained (%) by the Random Forest model modelled for all in vitro assays separately.  
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Figure 18: The adjusted R2, from the multiple linear regression model, based on five physicochemical descriptors (log Koc, log Kow, vapor pressure, 

molecular weight, and biodegradation (half-life in days)), plotted against the variance explained (%) by the Random Forest model, based on 
aforementioned descriptors, modelled for all in vitro assays separately.  
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3.4 In vitro assay types 

After grouping in vitro assays based on five category types (intended target family, technological target type, assay design type, signal direction, and organism-tissue 

combination), Random Forest analysis and the multiple linear regression analysis was based on the five physicochemical descriptors, as these showed to be the most 

consistent explanatory parameters, compared to taking structural fragments/functional groups as explanatory variables. Table 2 shows an overview of all results concerning 

both the Random Forest analysis and the multiple linear regression analysis. Overall, the best fits for both the Random Forest analysis and multiple linear regression analysis 

– when including physicochemical properties as explanatory variables – were obtained when categorizing the in vitro assays based on technological target type, which may 

be explained by an overlap in specific toxic modes of actions and specific target types used in the categorization of in vitro assays. Random Forest analysis in this case 

explained on average 55.27% of all variance in toxicity (AC50) data, while multiple linear regression analysis on average explained 13.3% of all variance in toxicity (AC50) 

data. However, when looking specifically at the percentage of predictions within a factor of five of experimental observations, the best Random Forest fit was obtained 

when categorizing assays based on organism-tissue combination, implying that sometimes interspecies differences may be greater and more important than inter-effect 

differences within a species. More details with respect to the results for each category can be found in Appendix I.I.  

Table 2: Summary showing all results concerning both the Random Forest model and the multiple linear regression model, based on five physicochemical descriptors, when grouping in vitro assays based on five 

in vitro assay category types. Summary statistics include average % of variance explained, median % of variance explained (± S.E.), highest variance explained, lowest variance explained, % of data points 
overfitted, % of data points over- or underestimated and % of observations within a factor of five of the predicted values. The third table shows the number of data point overestimated, underestimated, 
overfitted, and predictions within a factor of five of the observed data when clustering the data based on assay categories for the test and training dataset when applying the linear regression model.    

 

  Random Forest model Linear regression model 

Category Mean 
variance 
explained 
(%) 

Median 
variance 
explained 
(%) 

Lowest 
variance 
explained 
(%) 

Highest 
variance 
explained 
(%) 

Target with 
lowest 
variance 

Target with 
highest 
variance 
explained 

Mean 
variance 
explained 
(%) 

Median 
variance 
explained 
(%) 

Lowest 
variance 
explained 
(%) 

Highest 
variance 
explained 
(%) 

Target with 
lowest 
variance 

Target with 
highest 
variance 
explained 

Intended target 
family 

28,01% 
(±0,06%) 

31,22% -26,07% 84,70% Membrane 
protein 

Neurodevel
opment 

9,74% 
(±0,02%) 

9,01% -3,98% 32,04% Membrane 
protein 

Mitochondria 

Technological target 
type 

55,27% 
(±0,04%) 

54,85% 27,31% 84,70% Cellular Electrical 
activity 

13,30% 
(±0,02%) 

10,19% 0,95% 31,19% DNA Molecular 
messenger 

Assay design type 42,73% 
(±0,06%) 

38,25% 15,15% 84,70% Enzyme 
reporter 

Functional 
reporter 

12,69% 
(±0,02%) 

11,30% 1,52% 32,04% Biochemical 
reporter 

Respirometric 
reporter 

Signal direction 41,71% 
(±0,00%) 

41,71% 41,63% 41,78% Gain Loss 6,36% 
(±0,01%) 

6,36% 4,29% 8,43% Gain Loss 

Organism tissue 37,05% 
(±0,07%) 

41,36% -25,56% 83,24% Human brain Rat cortical 10,06% 
(±0,02%) 

8,99% -10,06% 31,81% Guinea pig 
spleen 

Rat kidney 
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Random Forest model Linear regression model 

Category % 
Overestimated 
(> 5x) 

% 
Underestimated 
(>5x) 

% Overfitted % Observations 
within a factor 5 
of predicted 
values 

% 
Overestimated 
(> 5x) 

% 
Underestimated 
(>5x) 

% Overfitted % Observations 
within a factor 5 
of predicted 
values 

Intended target 
family 

8,76% 6,95% 0,07% 84,28% 15,91% 21,25% 0,00% 62,48% 

Technological 
target type 

9,25% 7,40% 0,00% 83,35% 16,14% 19,85% 0,00% 64,01% 

Assay design type 9,81% 7,77% 0,00% 82,42% 16,14% 21,75% 0,00% 62,11% 

Signal direction 11,50% 9,35% 0,00% 79,15% 16,41% 21,82% 0,00% 61,78% 

Organism-tissue 
combination 

8,09% 6,37% 0,07% 85,54% 15,89% 21,01% 0,00% 63,11% 

 

 
Test Training 

Category Overestimated Underestimated Overfitted Between Overestimated Underestimated Overfitted Between 

Intended target 
family 

15,7% (±4,0%) 12,6% (±7,5%) 0,0% (±0,00%) 71,7% (±11,0%) 17,2% (±6,2%) 16,0% (±9,6%) 0,00% (±0,00%) 66,8% (±12,9%) 

Technological 
target type 

18,4% (±5,9%) 19,2% (±12,9%) 0,00% (±0,00%) 62,4% (±18,6%) 19,1% (±6,0%) 19,8% (±12,8%) 0,00% (±0,00%) 61,1% (±18,1%) 

Assay design type 17,0% (±4,4%) 18,4% (±7,4%) 0,00% (±0,00%) 64,6% (±11,3%) 16,8% (±5,4%) 19,7% (±6,7%) 0,00% (±0,00%) 63,6% (±11,6%) 

Signal direction 17,8% (±2,2%) 23,5% (±12,8%) 0,00% (±0,00%) 58,7% (±15,0%) 17,8% (±2,0%) 23,6% (±12,6%) 0,00% (±0,00%) 58,6% (±14,6%) 

Organism-tissue 
combination 

16,0% (±4,8%) 16,2% (±10,6%) 0,00% (±0,00%) 67,9% (±14,9%) 17,4% (±6,7%) 16,2% (±9,9%) 0,00% (±0,00%) 66,4% (±15,3%) 
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4 Overall discussion 

The present study was a continuation of the previous project “BTO 2023.60 - Zijn persistente mobiele stoffen minder 

giftig?”, in which correlations between physicochemical descriptors (i.e. log Kow, log Koc, biodegradation rate, vapor 

pressure, and molecular weight) were explored. A significant inverse correlation between mobility (log Koc) and 

toxicity was observed, indicating that a higher mobility results in a lower toxicity of the compound. However, in this 

previous study, all in vitro assay endpoints were analyzed individually and no special attention was given to 

differences and similarities with respect to toxicity when clustering in vitro assays based on in vitro assay type and 

toxicological mechanism. Additionally, only a relatively small subset of water relevant PMOCs were used as input in 

the modelling exercises.  

The study presented in the current report aimed to gain a deeper understanding of PMOC toxicity, allowing the 

signaling of new and potentially hazardous PMOCs that may emerge in the aquatic environment, based on their 

chemical structures and physicochemical properties, by looking into the predictive power of both Random Forest and 

multiple linear regression models for a large set of toxicity data (including PMOCs). Additionally, to allow for 

sufficiently large datasets for model training and in vitro data were clustered based on assay type, based on 

annotations as described in paragraph 2.3 (intended target family, technological target type, assay design type, signal 

direction and organism/tissue combination). As molecular structure (i.e. structural alerts or functional groups) has 

been associated with bioactivity, in the present study structural fragments and structural fragments/functional 

groups were taken as predictors in both the multiple linear regression analyses, as well as the Random Forest models. 

Random Forest performed relatively well in predicting AC50 values from ToxCast, when taking physicochemical 

descriptors as explanatory variables for some individual assays (mean variance explained: 15.8%, max: 84%, when 

looking at individual assay types), compared to multiple linear regression analysis (mean R2: 14.5% , max R2:  62.9%), 

implying that any correlations between five physicochemical parameters and toxicity are not linear. Although R2s 

were higher when taking structural fragments as explanatory variables in both models, Q2s remained low, implying 

that multiple linear regression analysis also did not perform well when using the models to predict toxicity for 

compounds outside the training dataset, based on structural fragments. In general, the Random Forest analysis 

performed poorly, compared to the multiple linear regression analysis. This poor performance may have multiple 

explanations. Firstly, individual datasets may have been too small, although a cut-off point of 50 data rows was used 

as a criterion. Bigger datasets did provide a better model fit (i.e. a higher percentage of the variance explained by the 

Random Forest model), when analyzing all in vitro assays separately. However, the highest variance explained by the 

Random Forest model was only 6%, still indicating a poor fit of the model when including structural fragments and 

functional groups as explanatory variables. Secondly, the models may contain a large proportion of irrelevant features 

(functional groups), in which case the model struggles to learn the underlying patterns in the data. As the initial 

dataset in the present study contains a maximum of 396 features (structural properties and functional groups), the 

model may have difficulties in identifying specific functional groups that may be useful in classifying the data based 

on AC50. Finally, the AC50 data itself is expected to be noisy. These toxicity data have been collected by multiple 

laboratories, scientists and analysts throughout the years, using different protocols. Although multiple flags (warning 

assigned by ToxCast – See paragraph 2.2), have been found in the data, these were in this research not used as 

criteria in truncation if the data, as these warnings covered over 50% of the complete dataset. The noise in the data 

may be reduced by standardizing the data (equation 3). However, standardizing the data makes the data less easy to 

interpret, as it adds complexity to the data; retransforming the data to interpret the results requires an extra step. 

Furthermore, the analyses performed in the present study may be less sensitive to noise in the data when using a 
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categorical (low toxicity, medium toxicity, and high toxicity) response variable rather than a continuous response 

variable.  

Although a bit better than the Random Forest model, the multiple linear regression analysis also did not perform 

great when including functional groups/structural fragments as explanatory variables. Overfitting occurs more often, 

especially in cases where the number of data entries is limited, as we included hundreds of different dummy-variables 

(0-1) (See 2.1), instead of five continuous variables. Predictions from such a rank-deficient fit (i.e. a fit on a dataset 

for which not enough observations are available per factor level) may be underestimating or overestimating. 

Additionally, in order to provide a reliable toxicity prediction, large amounts of data are needed to cover a wide 

variety of structural properties and functional groups, which was not always the case for all in vitro assays. Although, 

especially for smaller datasets, no good fits were obtained for all in vitro assays, more reliable results for regression 

models including functional groups as explanatory variables may be obtained when dividing AC50 in two or three 

toxicity classes, as is typically done in commercial read-across and QSAR software (Chakravarti et al., 2012; Ciallella 

et al., 2022; Krewski et al., 2020; Russo et al., 2019). Additionally, non-linear models or the inclusion of interaction 

terms (combinations of structural fragments, which may have a synergistic toxic effect) may also increase the fit of 

linear regression models. According to work by Calleja et al. (1994b) non-linear models taking molecular structure as 

explanatory variables appear to have a better fit than linear models. In the current report, models were based on 

functional groups, represented as dummy variables, representing the absence or presence of a certain functional 

group/structural fragment (See paragraph 2.1). Regression coefficients associated with this qualitative information 

tells us the average increase (or decrease) of (log-transformed) toxicity in case the functional group is present. In the 

case of a significant decrease in toxicity associated with a dummy variable, the functional variable can be considered 

de-activating.  

In the current report and modelling exercise AC50 data from ToxCast were used as response variables in both the 

Random Forest analysis, as well as the multiple linear regression analysis. Although these data provide information 

on bioactivity and potential mechanistic pathways that they act on, these data do not indicate hazard or an adverse 

effect in vivo (Huang et al., 2016). These data are typically used to prioritize chemicals based on expected bioactivity 

when in vivo toxicity data are lacking. To evaluate the potential hazard of a compound for which toxicity data are 

lacking, ToxCast (activity) data may be linked to biological events through adverse outcome pathways (AOPs). An AOP 

is a construct describing a sequential chain of causally linked biological events at different levels that lead to adverse 

effects. ToxCast data (on in vitro assays) may be clustered based on assay data corresponding to molecular initiating 

events (MIEs) in an AOP framework for a certain adverse effect as was done for thyroid disease by Nelms et al. (2018). 

There, ToxCast data were combined with chemical structure data (structural alerts) from OECD QSAR Toolbox and 

clustered corresponding to a set of MIEs within the AOP for hepatic steatosis.    
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5 Conclusions 

In the present study, we used multiple linear regression modelling and Random Forest analysis to explore whether 

toxicity (AC50 values) can be predicted based on physicochemical characteristics and structural properties of 

chemicals, and to evaluate if sub-setting in vitro assay data based on assay characteristics aid in predicting toxicity 

(bioactivity) . In  general, multiple linear regression explained more variance in toxicity when using functional 

groups/structural fragments (median over all individual in vitro assay endpoints: 54.5%) rather than physicochemical 

descriptors (median over all individual in vitro assay endpoints: 14.5%).  

In addition to exploring the predictive power of Random Forest models and multiple linear regression models based 

on physicochemical characteristics, in the current study, in vitro assays were clustered based on assay type (intended 

target family, technological target type, assay design type, signal direction and organism-tissue combination), to 

investigate the impact of assay annotations on the predictability of AC50s. Grouping based on technological target 

type resulted in the highest predictability of toxicity in both models, with an average of 55.27% of variance explained 

in the Random Forest model, and an average of 13.30.% explained in the multiple linear regression model). Although 

grouping of in vitro assays considerably increased the number of data rows in the training datasets used in the 

modelling exercises, the percentages of variances explained by both models when taking the physicochemical 

descriptors as explanatory variables, decreased significantly compared to grouping based on individual in vitro assays. 

Additionally, no considerable differences in the average percentages explained by the Random Forest model and 

multiple linear regression model could be observed when grouping the in vitro assays based on the five categories, 

based on assay annotations (intended target family, technological target type, assay design type, signal direction, 

organism-tissue combination). This was likely due to intercorrelation between in vitro assays within the different 

categories (e.g., the gross majority of in vitro assays in the neurodevelopment intended target family also tend to be 

in electrical activity technological target type). This implies that none of the individual categories included in this 

study to cluster the in vitro assays were suitable for the prediction of toxicity of chemicals. Nevertheless, for the large 

majority of individual in vitro assays as well as for groups of in vitro assays based on aforementioned grouping criteria, 

more than 80% of all predicted data points (by Random Forest based on physicochemical characteristics and by 

multiple linear regression based on functional groups) fell within a factor of five of the experimental data points, 

implying that the physicochemical descriptors and functional groups of compounds may still provide enough 

information to categorize toxicity into toxicity classes (based on AC50s).  

Although in the present study we gained a deeper understanding of (PMOC) toxicity using the ToxCast database, the 

aforementioned limitations (i.e. data limitation, rank deficiency and intercorrelation) of the models used hamper 

their applicability in the (drinking) water sector. In vitro assay endpoints included in the ToxCast database vary 

considerably in e.g. target type, tissue tested and assay design type and structural elements in itself may not solely 

explain differences in activity in these assays or there are still insufficient data available to derive reliable correlations. 

In contrast, physicochemical descriptors (especially the ones related to persistence and mobility) as explanatory 

variables in many cases (assay endpoints) provided sufficiently reliable predictions for activity in the assay. Just like 

in the previous study (See report BTO 2023.060), more mobile, more persistent compound tend to be less toxic. 

Note, however, that the reliability of the predictors decreased when assay endpoints were clustered based on one 

of the five aforementioned categories, implying that variation in AC50s between in vitro assay endpoint are greater 

than the variation between chemicals within assay endpoints. However, structural elements and physicochemical 

descriptors of chemicals for models of a subset of in vitro assay endpoint did provide sufficient information to predict 

AC50s and AC50 classes (i.e. ‘low’, ‘medium’, ‘high’). For this reason, in future research we foresee the development 

of a tool to predict toxicity classes, rather than exact toxicity (AC50) values for this particular subset of endpoints.  
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I Appendix : Individual Random Forest model 

and linear regression model by assay type. 

I.I Intended target family 

The intended target family attempts to represent the common targets across assay endpoints. These families pertain 

to gene families and include morphological and cell cycle concepts (U.S. EPA, 2015).  

Random Forest model 

In general, the Random Forest analysis, including the five most important predictive physicochemical descriptors (log 

Koc, log Kow, biodegradation rate, vapor pressure and molecular weight) as explanatory variables resulted in explaining 

28.01% (median: 31.22%, S.E.: 0.06) of all variance in the toxicity data (AC50s) when categorizing in vitro assays based 

on intended target family. Overall, when grouping in vitro assays based on intended target family, the highest 

percentage of variances explained by the Random Forest model were determined for in vitro assays related to 

neurodevelopment (84.74%), while the lowest % variance explained by the Random Forest model were found for in 

vitro assays related to membrane proteins (-26.07%) (Table 1). This implies that physicochemical descriptors included 

in the present study correlated strongly with neurodevelopmental activity AND that variation in AC50 values in the 

neurodevelopment dataset was proportional to or higher than the variation of physicochemical descriptors from 

chemicals in the dataset. Furthermore, this also implies that using a Random Forest model to predict toxicity for the 

subset of chemicals and in vitro assay endpoint focusing on membrane proteins result in a prediction that is worse 

than taking the average of all AC50 values. Figure 19 shows a heatmap visualizing to which extent the five 

physicochemical descriptors of interest correlate with toxicity for assays within one of the intended target families. 

The increase in MSE (%IncMSE) (Equation 1) corresponds to the extent to which the physicochemical parameter 

explains the variance in the Random Forest model. 
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Figure 19: Heatmap visualizing the increase in MSE (= to which extent the variable explains the variance in toxicity in the Random Forest model) 

for the five individual physicochemical parameters (y-axis), when grouping the in vitro assays based on intended target family (x-axis).  

 

Figure 20 shows the predicted effect concentrations (log10 AC50s) plotted against the observed effect concentrations, 

based on Random Forest analysis, taking the aforementioned five physicochemical parameters as explanatory 

variables, for all individual intended target families separately. In total, 84.3% of all individual predicted AC50s lied 

within a factor 5 of the observed AC50s; 7% of the predicted datapoints were more than a factor five below the 

observed datapoints (underestimated), while 8.8% of all datapoints were more than a factor five above the observed 

data (overestimated). 0.07% of the predicted datapoints were a perfect fit, which may indicate overfitting of the 

model. Individual observed-predicted plots can be found below. 
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Figure 20: Predicted toxicity (AC50 in μM) by the Random Forest model versus observed toxicity, based on five physicochemical parameters (log 
Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on intended target family). The 
middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5 times 

higher/lower than the observed data). 

 

Multiple linear regression model 

In general, the multiple linear regression analysis, including the five most important predictive physicochemical 

descriptors (log Koc, log Kow, biodegradation rate (half-life in days), vapor pressure and molecular weight) as 

explanatory variables resulted in explaining 9.7% (median: 9.0%, S.E.: 0.02%) of all variance in the toxicity data (AC50s) 

when categorizing in vitro assays based on intended target family, based on the adjusted R2. Overall, when grouping 

bioassays based on intended target family, the highest % of variances explained were determined for in vitro assays 

related to mitochondrial target type (32%), while the lowest % variance explained by the multiple linear regression 

model were found for in vitro assays related to membrane proteins (-4%) (Table 1). Figure 21 shows the predicted 

effect concentrations (log10 AC50s) plotted against the observed effect concentrations, based on the multiple linear 

regression model, taking the aforementioned five physicochemical parameters as explanatory variables (Equation 2), 

for all individual intended target families separately. In total, 62.84% of all individual predicted AC50s lied within a 

factor 5 of the observed AC50s; 21.25% of the predicted datapoints were more than a factor five below the observed 

datapoints (underestimated), while 15.91% of all datapoints were more than a factor five above the observed data 

(overestimated). None of the predicted datapoints were a perfect fit. 
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Figure 21: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed toxicity, based on five physicochemical 
parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on intended 
target family). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values 

are 5 times higher/lower than the observed data). 

 

Figure 22 shows the predicted effect concentrations (log10 AC50s) plotted against the observed effect concentrations, 

based on both the multiple linear regression model and the Random Forest model, covering all individual intended 

target families. Overall, the Random Forest model had a higher predictive power (R2 = 0.7, Figure 20) than the multiple 

linear regression model (R2 = 0.00051, Figure 21), implying that the correlation between toxicity and the five 

physicochemical parameters of chemicals may be non-linear, when subdividing in vitro assays based on intended 

target family. Below, all individual predicted-observed plots when categorizing based on individual intended target 

families are shown (Figure 23).  

 

 
Figure 22: Predicted toxicity (AC50 in μM) by the multiple linear regression model and the Random Forest model versus observed toxicity, based 

on five physicochemical parameters (Log Kow, Log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay 
type (based on intended target family). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 
ratio (the predicted values are 5 times higher/lower than the observed data). 
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Figure 23: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed toxicity, based on five physicochemical 
parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per individual in vitro assay type (based on 
intended target family). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted 

values are 5 times higher/lower than the observed data). 
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Figure 23 continued. 
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Figure 23 continued. 
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Figure 23 continued.  
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Figure 23 continued. 
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I.II Technological target type 

The technological target type attempts to represent the individual targets across assay endpoints. These families 

pertain to gene families and include morphological and cell cycle concepts (U.S. EPA, 2015).  

 

Random Forest model 

In general, the Random Forest analysis, including the five most important predictive physicochemical descriptors (log 

Koc, log Kow, biodegradation rate, vapor pressure and molecular weight) as explanatory variables resulted in explaining 

55.27% (median: 54.85%, S.E.: 0.04%) of all variance in the toxicity data (AC50s) when categorizing in vitro assays 

based on technological target type. Overall, when grouping in vitro assays based on technological target type, the 

highest % of variances explained were determined for in vitro assays focusing on electrical activity (84.7%), while the 

lowest % variance explained by the Random Forest model was found for cellular in vitro assays (27.31%) (Table 1). 

This implies that physicochemical descriptors included in the present study correlated strongly with cellular in vitro 

assays AND that variation in AC50 values in the dataset with cellular assays was proportional to or higher than the 

variation of physicochemical descriptors from chemicals in the dataset.  Figure 24 shows a heatmap visualizing to 

which extent the five physicochemical descriptors of interest correlate with toxicity for assays within one of the 

technological target types. The increase in MSE (%IncMSE) (Equation 1) corresponds to the extent to which the 

physicochemical parameter explains the variance in the Random Forest model. 

 

 
Figure 24:Heatmap visualizing the increase in MSE (= to which extent the variable explains the variance in toxicity in the Random Forest model) 
for the five individual physicochemical parameters (y-axis), when grouping the in vitro assays based on intended target family (x-axis).  
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Figure 25 shows the predicted effect concentrations (log AC50s) plotted against the observed effect concentrations, 

based on Random Forest analysis, taking the aforementioned five physicochemical parameters as explanatory 

variables, for all technological target types separately. In total, 83.35% of all individual predicted AC50s lied within a 

factor 5 of the observed AC50s; 7.4% of the predicted datapoints were more than a factor five below the observed 

datapoints (underestimated), while 9.25% of all datapoints were more than a factor five above the observed data 

(overestimated). None of the predicted datapoints were a perfect fit. Individual observed-predicted plots can be 

found below. 

 
Figure 25: Predicted toxicity (AC50 in μM) by the Random Forest model versus observed toxicity, based on five physicochemical parameters (Log 

Kow, Log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on technological target type).  
The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5 times 
higher/lower than the observed data). 

 

 

Multiple linear regression model 

In general, the multiple linear regression analysis, including the five most important predictive physicochemical 

descriptors (log Koc, log Kow, biodegradation rate (half-life in days), vapor pressure and molecular weight) as 

explanatory variables resulted in explaining 13.3% (median: 10.2%, S.E.: 0.02%) of all variance in the toxicity data 

(AC50s) when categorizing in vitro assays based on technological target type, based on the adjusted R2. Overall, when 

grouping in vitro assays based on technological target type, the highest % of variances explained were determined 

for in vitro assays related to molecular messaging (31.2%), while the lowest % variance explained by the multiple 

linear regression model were found for in vitro assays related to DNA (0.95%) (Table 1). Figure 26 shows the predicted 

effect concentrations (log10 AC50s) plotted against the observed effect concentrations, based on the multiple linear 

regression model, taking the aforementioned five physicochemical parameters as explanatory variables (Equation 2), 

for all individual technological target types, separately. In total, 64% of all individual predicted AC50s lied within a 

factor 5 of the observed AC50s; 19.85% of the predicted datapoints were more than a factor five below the observed 

datapoints (underestimated), while 16.1% of all datapoints were more than a factor five above the observed data 

(overestimated). None of the predicted datapoints were a perfect fit (overfitted). 
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Figure 26: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed toxicity, based on five physicochemical 

parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on technological 
target type). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values 
are 5 times higher/lower than the observed data). 

 

Figure 27 shows the predicted effect concentrations (log10 AC50s) plotted against the observed effect concentrations, 

based on both the multiple linear regression model and the Random Forest model, covering all individual intended 

target families. Overall, the Random Forest model had a higher predictive power (R2 = 0.7, Figure 25) than the multiple 

linear regression model (R2 = 0.00078, Figure 26), implying that the correlation between toxicity and the five 

physicochemical parameters of chemicals may be non-linear, when subdividing bioassays based on technological 

target type. 

 

 
Figure 27: Predicted toxicity (AC50 in μM) by the multiple linear regression model and the Random Forest model versus observed toxicity, based 
on five physicochemical parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type 
(based on technological target family). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 

ratio (the predicted values are 5 times higher/lower than the observed data). 
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Figure 28: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed toxicity, based on five physicochemical 
parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per individual in vitro assay type (based on 

technological target type). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio. 
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Figure 28 continued.  
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I.III Assay design type 

The assay design type represents the method that a biological or physical process is translated into a detectable 

signal. (U.S. EPA, 2015). The assay design type annotation captures the method by which the technological target is 

measured. 

 

Random Forest model 

In general, the Random Forest analysis, including the five most important predictive physicochemical descriptors (log 

Koc, log Kow, biodegradation rate, vapor pressure and molecular weight) as explanatory variables resulted in explaining 

42.73% (median: 38.25%, S.E.: 0.06%) of all variance in the toxicity data (AC50s) when categorizing in vitro assays 

based on assay design type. Overall, when grouping in vitro assays based on assay design type, the highest % of 

variances explained were determined for in vitro assays characterized as functional reporters (84.65%), while the 

lowest % variance explained by the Random Forest model was found for bioassays characterized as enzyme reporters 

(15.15%) (Table 1). This implies that physicochemical descriptors included in the present study correlated strongly 

with in vitro assays characterized as functional reporters AND that variation in AC50 values in the dataset with 

functional reporter assays was proportional to or higher than the variation of physicochemical descriptors from 

chemicals in the dataset. Figure 29 shows a heatmap visualizing to which extent the five physicochemical descriptors 

of interest correlate with toxicity for assays within one of the assay design types. The increase in MSE (%IncMSE) 

(Equation 1) corresponds to the extent to which the physicochemical parameter explains the variance in the Random 

Forest model. 

 
Figure 29: Heatmap visualizing the increase in MSE (= to which extent the variable explains the variance in toxicity in the Random Forest model) 

for the five individual physicochemical parameters (y-axis), when grouping the in vitro assays based on assay design type (x-axis). 
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Figure 30 shows the predicted effect concentrations (log10 AC50s) plotted against the observed effect concentrations, 

based on Random Forest analysis, taking the aforementioned five physicochemical parameters as explanatory 

variables, for all assay design types separately. In total, 82.4% of all individual predicted AC50s were within a factor 5 

of the observed AC50s; 7.8% of the predicted datapoints were more than a factor five below the observed datapoints 

(underestimated), while 9.8% of all datapoints were more than a factor five above the observed data (overestimated). 

None of the predicted datapoints were a perfect fit. Individual observed-predicted plots can be found below. 

 

 
Figure 30: Predicted toxicity (AC50 in μM) by the Random Forest model versus observed toxicity, based on five physicochemical parameters (log 

Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on assay design type). The middle 
dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5 times higher/lower 
than the observed data). 

 

Multiple linear regression model 

In general, the multiple linear regression analysis, including the five most important predictive physicochemical 

descriptors (log Koc, log Kow, biodegradation rate (half-life in days), vapor pressure and molecular weight) as 

explanatory variables resulted in explaining 12.7% (median: 11.3%, S.E.: 0.02%) of all variance in the toxicity data 

(AC50s) when categorizing in vitro assays based on assay design type, based on the adjusted R2. Overall, when grouping 

in vitro assays based on assay design type, the highest % of variances explained were determined for in vitro assays 

characterized as respirometric reporters (32%), while the lowest % variance explained by the multiple linear 

regression were found for in vitro assays characterized as biochemical reporters (1.5%) (Table 1).  

 

Figure 31 shows the predicted effect concentrations (log10 AC50s) plotted against the observed effect concentrations, 

based on the multiple linear regression model, taking the aforementioned five physicochemical parameters as 

explanatory variables (Equation 2), for all individual assay design types, separately. In total, 62.1% of all individual 

predicted AC50s were within a factor 5 of the observed AC50s; 21.7% of the predicted datapoints were more than a 

factor five below the observed datapoints (underestimated), while 16.1% of all datapoints were more than a factor 

five above the observed data (overestimated). None of the predicted datapoints were a perfect fit. 
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Figure 31: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed toxicity, based on five physicochemical 
parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on assay design 
type). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5 

times higher/lower than the observed data). 

 

Figure 32 shows the predicted effect concentrations (log10 AC50s) plotted against the observed effect concentrations, 

based on both the multiple linear regression model and the Random Forest model, covering all individual intended 

target families. Overall, the Random Forest model had a higher predictive power (R2 = 0.51, Figure 30) than the 

multiple linear regression model (R2 = 0.00028, Figure 31), implying that the correlation between toxicity and the five 

physicochemical parameters of chemicals may be non-linear, when subdividing in vitro assays based on assay design 

type. 

 
Figure 32: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed toxicity, based on five physicochemical 
parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on assay design 
type). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5 

times higher/lower than the observed data). 
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Figure 33: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed toxicity, based on five physicochemical 

parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per individual in vitro assay type (based on 
assay design type). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted 
values are 5 times higher/lower than the observed data). 

 
  



 
 

 

BTO 2023.086 | December 2023  A deeper understanding of PMOC toxicity 58 

 
Figure 33 continued. 
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I.IV Signal direction 

The signal direction (Figure 1G) indicates whether the in vitro assay endpoint provides ‘gain’ or ‘loss’ of signal data 

(U.S. EPA, 2015). 

Random Forest model 

In general, the Random Forest analysis, including the five most important predictive physicochemical descriptors (log 

Koc, log Kow, biodegradation rate, vapor pressure and molecular weight) as explanatory variables resulted in explaining 

41.71% (median: 41.71, S.E.: 0.00024) of all variance in the toxicity data (AC50s) when categorizing in vitro assays 

based on signal direction. Overall, when grouping in vitro assays based on signal direction, the highest % of variances 

explained were determined for in vitro assays with chemicals producing a hit (i.e., AC50 ≤ 1000 µM) causing a loss of 

signal (41.78%), while the lowest % variance explained by the Random Forest model was found for bioassays with 

chemicals producing a hit causing a gain of signal (41.63%) (Table 1). in vitro assays characterized as functional 

reporters Figure 34 shows a heatmap visualizing to which extent the five physicochemical descriptors of interest 

correlate with toxicity for in vitro assays within one of the two signal directions. The increase in MSE (%IncMSE) 

(Equation 1) corresponds to the extent to which the physicochemical parameter explains the variance in the Random 

Forest model. 

 

 
Figure 34: Heatmap visualizing the increase in MSE (= to which extent the variable explains the variance in toxicity in the Random Forest model) 

for the five individual physicochemical parameters (y-axis), when grouping the in vitro assays based on signal direction (x-axis). 

 

Figure 35 shows the predicted effect concentrations (log10 AC50s) plotted against the observed effect concentrations, 

based on Random Forest analysis, taking the aforementioned five physicochemical parameters as explanatory 
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variables, for both signal directions separately. In total, 79.15% of all individual predicted AC50s lied within a factor 5 

of the observed AC50s; 9.35% of the predicted datapoints were more than a factor five below the observed datapoints 

(underestimated), while 11.5% of all datapoints were more than a factor five above the observed data 

(overestimated). 0.008% of the predicted datapoints were a perfect fit, which may indicate overfitting of the model. 

Individual observed-predicted plots can be found below. 

 

 
Figure 35: Predicted toxicity (AC50 in μM) by the Random Forest model versus observed toxicity, based on five physicochemical parameters (log 
Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on signal direction). The middle 
dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5 times higher/lower 

than the observed data). 

 

Multiple linear regression model 

In general, the multiple linear regression analysis, including the five most important predictive physicochemical 

descriptors (log Koc, log Kow, biodegradation rate (half-life in days), vapor pressure and molecular weight) as 

explanatory variables resulted in explaining 6.36% (median: 6.36% % , S.E.: 0.01%) of all variance in the toxicity data 

(AC50s) when categorizing in vitro assays based on signal direction, based on the adjusted R2. Overall, when grouping 

in vitro assays based on signal direction, the highest % of variances explained were determined for in vitro assays 

with chemicals producing a hit causing a loss of signal (8.4%), while the lowest % variance explained by the multiple 

linear regression model were found for in vitro assays with chemicals producing a hit causing a gain of signal (4.3%) 

(Table 1).  

 

Figure 36 shows the predicted effect concentrations (log10 AC50s) plotted against the observed effect concentrations, 

based on the multiple linear regression model, taking the aforementioned five physicochemical parameters as 

explanatory variables (Equation 2), for both signal directions, separately. In total, 61.78% of all individual predicted 

AC50s lied within a factor 5 of the observed AC50s; 21.8% of the predicted datapoints were more than a factor five 

below the observed datapoints (underestimated), while 16.4% of all datapoints were more than a factor five above 

the observed data (overestimated). None of the predicted datapoints were a perfect fit. 
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Figure 36: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed toxicity, based on five physicochemical 
parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on signal 
direction). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 

5 times higher/lower than the observed data). 
 

 

Figure 37 shows the predicted effect concentrations (log10 AC50s) plotted against the observed effect concentrations, 

based on both the multiple linear regression model and the Random Forest model, covering all individual intended 

target families. Overall, the Random Forest model had a slightly lower predictive power (R2 = 3.9E-7, Figure 35) than 

the multiple linear regression model (R2 = 0.00051, Figure 36), implying that the correlation between toxicity and the 

five physicochemical parameters of chemicals may be non-linear, when subdividing in vitro assays based on signal 

direction. However, both the R2 and variance explained by the random forest model were very low, implying that sub 

setting in vitro assays based on signal direction does not lead to a better model fit in both cases.  

 

 
Figure 37: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed toxicity, based on five physicochemical 
parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on signal 
direction). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 

5 times higher/lower than the observed data). 
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Figure 38: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed toxicity, based on five physicochemical 
parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per individual assay type (based signal 

direction). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 
5 times higher/lower than the observed data). 
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I.V Organism and tissue type 

Random Forest model 

In general, the Random Forest analysis, including the five most important predictive physicochemical descriptors (log 

Koc, log Kow, biodegradation rate, vapor pressure and molecular weight) as explanatory variables resulted in explaining 

37.1% (median: 41.36%, S.E.: 0.07%) of all variance in the toxicity data (AC50s) when categorizing in vitro assays based 

on organism-tissue combination. Overall, when grouping bioassays based on organism-tissue combination, the 

highest % of variances explained were determined for in vitro assays based on cortical rat cells (83.2%), while the 

lowest % variance explained by the Random Forest model was found for in vitro assays based on human brain cells (-

25.56%) (Table 1). This implies that physicochemical descriptors included in the present study correlated strongly 

with assays using cortical rat cells AND that variation in AC50 values in the dataset including assays using corticol rat 

cells was proportional to or higher than the variation of physicochemical descriptors from chemicals in the dataset. 

Furthermore, this also implies that using a Random Forest model to predict toxicity for the subset of chemicals and 

in vitro assay endpoint using human brain cells result in a prediction that is worse than taking the average of all AC50 

values, likely due to data limitations.   Figure 39 shows a heatmap visualizing to which extent the five physicochemical 

descriptors of interest correlate with toxicity for in vitro assays within the organism-tissue combinations. The increase 

in MSE (%IncMSE) (Equation 1) corresponds to the extent to which the physicochemical parameter explains the 

variance in the Random Forest model. 

 
Figure 39: Heatmap visualizing the increase in MSE (= to which extent the variable explains the variance in toxicity in the Random Forest model) 

for the five individual physicochemical parameters (y-axis), when grouping the in vitro assays based on organism-tissue combination (x-axis). 

 

Figure 40 shows the predicted effect concentrations (log10 AC50s) plotted against the observed effect concentrations, 

based on Random Forest analysis, taking the aforementioned five physicochemical parameters as explanatory 

variables, for both signal directions separately. In total, 85.54% of all individual predicted AC50s lied within a factor 5 
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of the observed AC50s; 6.4% of the predicted datapoints were more than a factor five below the observed datapoints 

(underestimated), while 8.1% of all datapoints were more than a factor five above the observed data (overestimated). 

0.07% of the predicted datapoints were a perfect fit, which may indicate overfitting of the model. Individual 

observed-predicted plots can be found below. 

 
Figure 40: Predicted toxicity (AC50 in μM) by the Random Forest model versus observed toxicity, based on five physicochemical parameters (log 

Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on organism-tissue combination). 
The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5 times 
higher/lower than the observed data). 

 

 

Multiple linear regression model 

In general, the multiple linear regression analysis, including the five most important predictive physicochemical 

descriptors (log Koc, log Kow, biodegradation rate (half-life in days), vapor pressure and molecular weight) as 

explanatory variables resulted in explaining 10% (median: 9% % , S.E.:0.02%) of all variance in the toxicity data (AC50s) 

when categorizing in vitro assays based on organism-tissue combination, based on the adjusted R2. Overall, when 

grouping in vitro assays based on organism-tissue combination, the highest % of variances explained were 

determined for in vitro assays based on rat kidney cells (31.8%), while the lowest % variance explained by the multiple 

linear regression model were found for in vitro assays based on guinea pig spleen cells (-10%) (Table 1).  

 

Figure 41 shows the predicted effect concentrations (log10 AC50s) plotted against the observed effect concentrations, 

based on the multiple linear regression model, taking the aforementioned five physicochemical parameters as 

explanatory variables (Equation 2), for all organism-tissue combinations, separately.  
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Figure 41: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed toxicity, based on five physicochemical 
parameters (Log Kow, Log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on organism-
tissue combination). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted 

values are 5 times higher/lower than the observed data). 
 

Figure 42 shows the predicted effect concentrations (log10 AC50s) plotted against the observed effect concentrations, 

based on both the multiple linear regression model and the Random Forest model, covering all individual intended 

target families. Overall, the Random Forest model had a higher predictive power (R2 = 0.38, Figure 40) than the 

multiple linear regression model (R2 = 0.02, Figure 41), implying that the correlation between toxicity and the five 

physicochemical parameters of chemicals may be non-linear, when subdividing in vitro assays based on organism-

tissue combination. In total, 63.1% of all individual predicted AC50s lied within a factor 5 of the observed AC50s; 21% 

of the predicted datapoints were more than a factor five below the observed datapoints (underestimated), while 

15.9% of all datapoints were more than a factor five above the observed data (overestimated). None of the predicted 

datapoints were a perfect fit. 

 

 
Figure 42: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed toxicity, based on five physicochemical 
parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on organism-

tissue type). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values 
are 5 times higher/lower than the observed data). 
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Figure 43: Predicted toxicity (AC50 in μM) by the multiple linear regression model versus observed toxicity, based on five physicochemical 

parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per individual in vitro assay type (based on 
organism-tissue combination). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the 
predicted values are 5 times higher/lower than the observed data). 
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Figure 43 continued. 
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Figure 43 continued. 
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Figure 43 continued. 
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Memo 

II Appendix: A preliminary Adverse 

Outcome Pathway analysis for 

PMOCs  

II.I Introduction 

Integrating knowledge of various biological reactions at molecular levels due to toxicants has attracted more 

attention in the field of risk assessment. Adverse outcome pathways (AOPs) were proposed as a conceptual 

framework to organize existing scientific knowledge by Ankley et al. 2010. These are models that identify the 

sequence of molecular and cellular events required to produce a toxic effect when an organism is exposed to a 

substance. AOPs consist of various key events (KEs) starting with a molecular initiating event (MIE) to lead to an 

adverse outcome (AO) that is relevant to a risk assessment context such as survival. A substantial effort has been 

made to enhance the AOPs for many chemicals, and identified AOPs are collected in the online database AOP-Wiki 

(https://aopwiki.org/), which is hosted by the Society for the Advancement of Adverse Outcome Pathways.  

Additionally, more studies have been conducted to enhance AOPs search by exploring associations between stressors 

and KEs from scientific literature. The original method was applied to bisphenol A substituents and pesticides first 

(Carvaillo et al. 2019), after which it was developed into the web server (Jornod et al. 2022) and an updated version 

of a tool, AOP-helpFinder 2.0, which highlights features to facilitate to search and interpret AOPs more easily (Jaylet 

et al. 2023). This tool is based on natural language processing (text mining) to search keywords in scientific literature 

stored in PubMed database, by screening abstracts. The search result is provided with a score to support the weight 

of evidence approach (Hardy et al., 2017). The AOP-helpFinder has contributed already to several investigations of 

the mechanisms of exposure to per- and polyfluoroalkyl substances (PFAS) (Gundacker et al. 2022; Kaiser et al. 2022) 

Here, we explored AOPs related to PMOCs. The AOP-helpFinder was employed in the analysis to search for possible 

related AOPs from a wide range of previous studies in PubMed. 

 

II.II Method 

The AOP-helpFinder 2.0 (Jaylet et al. 2023) was used to explore the pathways that can be related to PMOCs, by 

matching a number of research articles stored in the PubMed database, using the webserver (Jornod et al. 2022). 

The stressor event analysis enables us to find AOPs that may have links to the target chemicals. The analysis requires 

two types of data: chemical names and event names. The chemicals are in this case the list of 1119 PMOCs as 

described in section 2.1 in the main report (BTO xxxx.xx – A deeper understanding of PMOC toxicity). The events 

indicate biological events related to AOPs, such as MIE, KE, and AO. For this study, the event names were taken from 

Kaiser et al. (2022), who conducted an AOP analysis to address associations between PFAS exposure and metabolic 

health outcomes. This list of events related to metabolism is shown in Table 3. The stressor event analysis was 

performed according to the default setting, i.e. the search was performed in the full abstract of research articles from 

PubMed, without a lemmatization process. By skipping the lemmatization process, the terms are kept in their natural 

forms without standardizing them to their root or base. Confidence scores were assigned to each combination of the 

stressors (1119 PMOCs) and the events based on the p-value derived from a Fisher’s exact test. This metric was 

utilized to assess whether an occurrence demonstrates a higher frequency of association with a stressor (stressor-

event) in contrast to another event (event-event). The scores were divided into five categories to facilitate the 

interpretation of the results: Low, Quite Low, Moderate, High, and Very High (Jaylet et al. 2023). 
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Table 3: List of the events used for the stressor event analysis (taken from Kaiser et al. 2022) 

Insulin Resistance Syndrome Syndrome X Dysmetabolic Syndrome X 

Type 2 Diabetes Mellitus Insulin Sensitivity Glucose Intolerances 

Insulin Resistance Metabolic syndrome Dyslipidemias 

Hyperlipidemias High Blood Pressure Hypertension 

Central Obesity Liver Diseases Thyroid Diseases 

Metabolic Cardiovascular Syndrome Hyperglycemia Dyslipoproteinemias 

Abdominal Obesity   

 

 

II.III Results and discussion 

Among the 1119 PMOCs, 479 chemicals were found in the stressor event analysis at one or more occurrences. The 

count of the occurrences, i.e., the number of links indicating associations between each chemical and stressor event , 

was about 1837 on average, with a range of 1–75561. The distribution of the events over the found stressors, i.e., 

the studied PMOCs (Figure 4),was based on 216,008 PubMed articles that provided one or more links. This indicates 

that abundant scientific literature was employed in this search. The event “Hypertension” had the largest number of 

links (Figure 45). The second largest number of links was found with the event “Type 2 Diabetes Mellitus”, and those 

two top links accounted for more than 50% of the total links. This means that the list of PMOCs was most commonly 

associated with these events in scientific literature. Figure 46 shows with which chemicals those events were often 

associated and the confidence score for each relationship. The confidence scores have five levels, and the results 

indicate that the Type 2 Diabetes Mellitus had the higher scores (“Very High”) in their links, compared with the links 

of the other events. Among 9101 combinations resulting from 479 stressors and 19 events, 3011, 30, 59, 32, and 250 

stressor-event pairs were found to have confidence scores of Low, Quite Low, Moderate, High, and Very High, 

respectively (no links were found in the rest of the 5708 pairs). This indicates that the links between the stressors 

and the events were not statistically significant in most cases. To discuss the results more carefully, examining original 

literature would be essential; however, it should be noted that a systematic approach should be designed prior to 

the analysis of a multitude of studies. Overall, the current analysis suggests that the PMOCs we retrieved from several 

databases could be associated with various metabolic pathways. The usefulness of the AOP-helpFinder 2.0 was 

highlighted as a screening tool to search possible relevant metabolic pathways, which would be helpful for further 

risk assessment for these chemicals. 
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Figure 44: Distribution of the 216,008 articles according to the number of stressors and events detected in each. 

 
Figure 45: Distribution of stressor-event links according to the 19 most common events, representing 100% of the total data set (19 distinct events 
and 880,015 links).  
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Figure 46: Distribution of stressor-event links according to the 30 most common links  

 

Although Nelms et al. (2018) showed that AC50 results may be combined with AOPs in order to come to a more 

complete risk assessment, combining ToxCast data with AOP information was outside the scope of this present 

study. Future studies can explore possibilities to use experimental and predicted AC50 data from ToxCast for water 

relevant compounds in AOP pathway frameworks to relate in vitro toxicity (bioactivity) data to adverse effects in 

vivo.  
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