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Managementsamenvatting

Meer inzicht in manieren om de toxiciteit van persistente, mobiele organische stoffen
(PMOC'’s) te voorspellen

Auteurs: Renske Hoondert, Miina Yanagihara, Thomas ter Laak
Onderzoek heeft meer inzicht gebracht in manieren om toxiciteit van stoffen te voorspellen. Een random forest

analyse (een machine learning model) blijkt geen verband te laten zien tussen toxiciteit en stofstructuur, maar wel
tussen stofkenmerken als mobiliteit en persistentie en de toxiciteit van een stof. Ook regressieanalyses lieten een
significante correlatie zien tussen toxiciteit en de stofeigenschappen die de mobiliteit bepalen, maar met een lager
voorspellend vermogen dan de random forest analyse. Het voorspellend vermogen van regressiemodellen op basis
van stofstructuur was juist hoger dan het voorspellend vermogen van random forest analyses op basis van
stofstructuur. Dit betekent dat de relatie tussen stofkenmerken en toxiciteit waarschijnlijk niet lineair (evenredig) is.
Clustering van de toxiciteitstesten in de modellen resulteerde niet in betere voorspellingen. Stofstructuur en
stofeigenschappen als voorspellende variabelen in modellen van een subset van toxiciteitstesten leverden wel
voldoende informatie op om toxiciteitsklassen in plaats van toxiciteit te voorspellen (d.w.z. ‘lage’, ‘medium’, en
‘hoge toxiciteit’). Dit kan de basis vormen voor een toekomstig hulpmiddel om toxiciteitsklassen te voorspellen in
plaats van exacte toxiciteitswaarden.

o Tesidataset PMOC-stof

* Triningsdataset Geen PMOC stof

Voorspelde toxiciteitseindpunt
Voorspelde toxiciteitseindpunt

1 0 10
Gemeten toxiciteitseindpunt

10 10 10
Gemeten toxiciteitseindpunt

Voorspelde toxiciteitswaarden (y-as) uitgezet tegenover gemeten toxiciteitswaarden (x-as) voor PMOC-stoffen en andere stoffen en voor de
trainingsdataset (de data waarop het model gebaseerd is) en de testdataset (de data waarop het model NIET gebaseerd is). De modellen die
Zijn afgeleid in deze studie zijn gebaseerd op structuren van meer dan 5000 stoffen en meer dan 600 individuele toxiciteitstesten.

Belang: de relatie tussen stofstructuur, - specifieke stofeigenschappen (structurele
eigenschappen en toxiciteit ophelderen elementen) en toxiciteit beter te begrijpen en te

In een eerder project (zie BTO 2023.060 — Zijn kunnen voorspellen.

PMOC’s minder giftig?) is gekeken of persistente

mobiele organische stoffen minder giftig zijn dan Aanpak: de relatie tussen structuur, eigenschappen
stoffen die dat niet zijn. Hieruit bleek dat meer en toxiciteit van een stof

mobiliteit van een stof vaak overeenkomt met een De relatie tussen de stofeigenschappen die stoffen
lagere toxiciteit. Maar er zijn andere factoren die persistent en mobiel maken en hun toxiciteit is met
mogelijk een rol kunnen spelen in de biologische statistische technieken onderzocht. Met random
activiteit van stoffen, zoals de structuur en de aan- forest analyses is bestudeerd welke stof-
/afwezigheid van bepaalde groepen. Ook rees de eigenschappen en groepen van atomen

vraag of toxiciteitstesten konden worden geclusterd (structuurelementen) correleren met gemeten

om de dataset te vergroten en mechanismen tussen effectconcentraties in toxiciteitstesten. Deze
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effectconcentraties komen uit de ToxCast dataset die
603 toxiciteitstesten en 5,114 stoffen omvat.
Vervolgens is de relatie tussen deze
stofeigenschappen en effectconcentraties
geanalyseerd met lineaire regressiemodellen. Daarna
zijn de toxiciteitstesten geclusterd op basis van
diverse categorieén (bijvoorbeeld doeltype van de
test of organisme-weefselcombinatie) en zijn deze
technieken herhaald en geévalueerd.

Resultaten: mobiele stoffen zijn gemiddeld minder

giftig, persistentie zegt daarover niets
De random forest analyse in het huidige onderzoek

toonde geen verband aan tussen toxiciteit en
stofstructuur, terwijl wel een verband werd
aangetoond tussen stofkenmerken (bijvoorbeeld
mobiliteit en persistentie) en toxiciteit. De
daaropvolgende regressieanalyses lieten opnieuw
een significante correlatie zien tussen de toxiciteit en
de stofeigenschappen die de mobiliteit bepalen,
maar het voorspellend vermogen voor het
regressiemodel was wel lager dan voor het random
forest model, terwijl het voorspellende vermogen
voor regressiemodellen op basis van stofstructuur
juist hoger was dan voor random forestmodellen op
basis van stofstructuur. Dit betekent dat de relatie
tussen stofkenmerken en toxiciteit waarschijnlijk niet
lineair (evenredig) is. De voorspellingen werden ook
niet beter op het moment dat de toxiciteitstesten
werden geclusterd.

Toepassing: beperkingen van de modellen

belemmeren toepasbaarheid in (drink)watersector
Deze studie heeft meer inzicht gegeven in (het

voorspellen van) de toxiciteit van stoffen met behulp
van de ToxCast-database. De gebruikte modellen
hebben echter beperkingen (zoals de gelimiteerde
datasets per toxiciteitstest en hun onderlinge
correlaties) die hun toepasbaarheid in de

A deeper understanding of PMOC toxicity

(drink)watersector belemmeren. De in de database
opgenomen eindpunten van de toxiciteitstesten
variéren aanzienlijk in bijvoorbeeld doeltype en
testontwerp. Stofstructuur op zichzelf kan de
verschillen in toxiciteit in deze testen niet verklaren
en mogelijk zijn nog steeds onvoldoende data
beschikbaar om betrouwbare correlaties af te leiden
(zie figuur). Vaak leverden stofeigenschappen (vooral
die gerelateerd aan persistentie en mobiliteit) als
verklarende variabelen in veel gevallen
(toxiciteitstesten) wél voldoende betrouwbare
voorspellingen voor de activiteit in de test. Net als in
eerder onderzoek (zie rapport BTO 2023.060) zijn
mobielere, persistentere verbindingen doorgaans
minder giftig. De betrouwbaarheid van de
voorspellende modellen nam echter af wanneer
testeindpunten werden geclusterd op basis van een
van de categorieén. Stofstructuur en
stofeigenschappen als voorspellende variabelen in
modellen van een subset van toxiciteitstesten
leverden voldoende informatie op om
toxiciteitsklassen in plaats van toxiciteit te
voorspellen (d.w.z. ‘laag’, ‘medium’, ‘hoog’). Om
deze reden voorzien we in toekomstig onderzoek de
ontwikkeling van een hulpmiddel om
toxiciteitsklassen te voorspellen, in plaats van exacte
toxiciteitswaarden voor deze specifieke subset van
eindpunten. Daarnaast rijst de vraag of de
toxiciteitstesten die zijn opgenomen in ToxCast wel
de juiste testen zijn om daadwerkelijke effecten op
organismeniveau te bepalen. Mogelijk leiden deze
tot te hoge of juiste te lage schattingen van het
effect van stoffen.

Rapport

Dit onderzoek is beschreven in het rapport A deeper
understanding of PMOC toxicity (BTO 2023.086).
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1 Introduction

Over the years, persistent and mobile (organic) compounds (PM(QO)Cs) have been receiving increased attention in the
drinking water sector. A compound will be labeled as a PMOC if it meets three criteria (partly based on criteria set by
Neumann and Schliebner (2019)): i) the compound is organic; ii) the lowest organic carbon-water coefficient log Koc
over the pH range of 4-9 is less than 4.0; and iii) the degradation half-life in fresh or estuarine water at 12 °C is higher
than 40 days. PMOCs may pose threats to human health and the environment as the high mobility in water (as a
result of their hydrophobicity) and persistence of these compounds lead to their occurrence and accumulation in
surface water and drinking water sources. Additionally, some of these substances also tend to accumulate in the food
chain, due to their bioaccumulative potential (Ghisi et al., 2019). The water sector is increasingly confronted with
these substances. Because the high hydrophobicity of these chemicals makes it challenging to remove them by
conventional water treatments, it is becoming increasingly important to estimate risks associated with PMOC
emissions. For many of these chemicals, little is known about their toxicity as ‘mobility” has historically been neglected
as a prioritization criterium for ecotoxicological assessment. As it is time consuming and expensive to conduct in vivo
and in vitro toxicity experiments, in silico approaches are useful in estimating hazards associated with such
substances. The advantage is that they can be relatively easily conducted and do not require compound availability
to conduct experiments. A disadvantage, however, is the lack of suitable, large datasets which may serve as basis e.g.
for in silico predictive machine learning models (Hemmerich et al., 2020).

In a previous study, we focused on associations between toxicity of chemicals and their physicochemical properties
that determine persistence and mobility in the environment. Random Forest analyses and multiple linear regression
analyses indeed showed that properties related to polarity (hydrophilicity and mobility), particularly Kow and Koc, are
inversely related to concentrations that elicit responses in bioassays (‘effect concentrations’ — ACso), confirming that,
in general, more polar chemicals are less toxic (BTO 2023.060: “Are PMOCs less toxic?”). The associations presented
in the previous study indicate that PMOCs interact less with tissues, cell membranes, and receptors than similar but
more hydrophobic chemicals, leading to lower intrinsic toxicity. However, the study also indicated that it may be
difficult to predict (human) toxicity based on these physicochemical properties alone, as the processed ToxCast
dataset of bioassay effect concentrations (at that time based on a list of water relevant PMOCs) covers not only a
very diverse set of chemicals with different toxic modes of action, but also includes a large variety of assays with
different toxicological endpoints. Furthermore, studies have shown that correlations between physicochemical
descriptors (i.e. log Kow and log Koc) may not always be linear (Calleja et al., 1994a; Calleja et al., 1994b; Mackay et al.,
2009). At the moment, a mechanistic understanding of what makes PMOCs more or less toxic is yet to be developed.

In the present study, we aim to deepen the understanding of PMOC toxicity by building upon the dataset and
knowledge developed in this previous project and by producing QSARs (Quantitative Structure Activity Relationships)
based on both linear regression analysis and random forest analysis (machine learning) to predict toxicity of PMOCs
and non-PMOCs. Instead of focusing on a limited dataset of ~3000 chemicals, we now include the complete ToxCast
database, containing tens of thousands of chemicals, and thousands of in vitro assays (Feshuk et al., 2023). Next to
exploring non-linear relationships between toxicity and general physicochemical descriptors (e.g. Kow, Koc), we also
look into structural properties and functional groups (taken from the OECD QSAR Toolbox (Schultz et al., 2018)) as
explanatory variables in our models, and into grouping in vitro assays based on ‘target’ and ‘study design’ information
from the individual experiments themselves. This information is based on annotations recommended by Phuong et
al. (2014) on ToxCast assay characteristics including the intended target type, technological target type, assay design
type, and signal direction.
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In addition to the development of QSARs based on ToxCast data from in vitro assays, the identification of adverse
outcome pathways (AOPs) may be useful to provide information on systemic toxicity, by linking chemical exposure
to a series of events leading to an adverse health effect in humans. Several tools have been developed to provide
information on adverse outcome pathways of chemicals, including the AOP wiki (Society for the Advancement of
Adverse Outcome Pathways (SAAOP), 2023) and the AOP-helpFinder (Jaylet et al., 2023; Université Paris Cité, 2023).
The latter tool highlights features to facilitate to search and interpret AOPs more easily (Jaylet et al. 2023). This tool
is based on natural language processing (text mining) to search keywords in scientific literature stored in PubMed
database, by screening abstracts. The search result is provided with a score to support the weight of evidence
approach (Hardy et al., 2017). In the present study, we explored AOPs related to PMOCs that were listed based on
the methodology described in paragraph 2.1. The AOP-helpFinder was employed in the analysis to search for possible
AOPs from a wide range of previous studies in PubMed (Appendix Il). A better understanding of PMOC toxicity will
allow the identification of new and potentially hazardous PMOCs based on their chemical structures (e.g. specific
structural alerts and features) and physicochemical properties that drive persistence and mobility. As such, the
knowledge gap on the toxicity of PMOCs is narrowed, and PMT (persistent, mobile and toxic) chemicals can be
identified from the larger pool of PMOCs for targeted risk mitigation.
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2 Methods

2.1 Data acquisition, quality and formatting

To gain insight into the toxicity of PMOCs, the complete ToxCast dataset was downloaded, consisting of 21 databases,
encompassing over 3.7 million toxicity data records (U.S. EPA, 2015). When only including active substances
(substances triggering a toxicological response, an active hit call), the resulting dataset consists of 1677 individual in
vitro assays endpoints (based on a smaller number of unique assays) from 20 sources (separate databases), with
357,010 data entries for 8,119 unigue substances (based on CAS number). In ToxCast, the active concentration at
which 50% of the effect is observed (ACso in M) is calculated using experimental concentration response series for
a wide range of in vitro bioassays and three model types; a constant (two-parameter) model, a Hill (three parameter)
S-model, and a gain-loss model, which is the product of two (three parameter) Hill models.

Log ACsos (the active concentration at which 50% of the effect is observed) for the best predictive model (based on
lowest Akaike Information Criterion (AIC) (Feshuk et al.,, 2023)) are calculated automatically. In ToxCast,
concentration response series only get an active hit call (and high quality rating) when they meet three criteria (Filer
etal., 2014):

1. The Hill model (S-curve model, see Figure 1) should emerge as the model with the best fit (based on lowest
AIC — Akaike Information Coefficient (Feshuk et al., 2023))

2. The top of the modeled curve must be above the efficiency threshold (efficacy cutoff, the maximal
experimental value on which the model was based)

3. For at least one concentration, the median response must be above the efficacy threshold

The complete dataset was cleaned up for analysis based on three criteria, based on:
e the number of active hit-calls (described above, especially criterion 1);
e the solubility of the chemicals (which should not be lower than the ACso of the concentration-response
curve);
e the sample size of the sub datasets.

In order to build a suitable database that can act as a training dataset in deriving our models, in the modelling
exercise, we are only interested in experiments that meet aforementioned criteria, especially the first criterion.
Below, a histogram depicting the percentage of the number of individual experiments in which the Hill model is the
model with the best fit, for all individual in vitro assays, is shown (Figure 1). The figure shows that — in general — for
most chemicals tested for the in vitro assay endpoints, the Hill model did NOT appear as the best fitted model (0-
50%), while for a small subset of in vitro assay endpoints for all chemicals (100%) the Hill model appeared as the best
fitted model.
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0.00 025 0.50 0.75 1.00
Percentage hill model winner (based on having lowest AIC value)

Figure 1: Histogram depicting the percentage of individual concentration-response experiments in which the Hill model is the best fitting model,
per individual in vitro assay. X-axis: percentage hill model ‘wins’, y-axis: percentage of all experiments included in the dataset.

1) For 69 in vitro assays, for 100% of the individual experiments the Hill models appeared to have the best fit.
However, sample sizes for these in vitro assays are extremely small (< 4 chemicals analyzed per in vitro assay
endpoint; complete concentration-response curves —including replicates), and in total only 132 data records
out of 357,010 data records (= single experiments) in the complete dataset are based on bioassays with a
100% hill model “winning” percentage. These data records were later removed from the dataset as the in
vitro assays did not fulfill the sample size requirement (see criterion 3). For 160 in vitro assays for 0% of the
individual experiments the Hill models appeared to have the best fit. These 160 individual in vitro assays
covered a total of 9152 data records in the initial dataset. These in vitro assays were removed from the
dataset.

The resulting data were combined with data on physicochemical parameters that drive mobility and persistence (Kow,
Koc, molecular weight, degradation half-life (in days), and vapor pressure (in mmHg at 25 °C)) from EPISuite, resulting
in a dataset of 281,369 data records, covering 6054 chemicals and 1627 in vitro assays.

2) Since low solubility of a compound frequently affects the actual exposure in a toxicity test (generally leading
to underestimation of its effect) (Groothuis et al., 2015), poorly soluble chemicals (i.e. with a solubility in
UM below the corresponding ACso) were removed from the data set (Jonker & Van der Heijden, 2007).
Solubility (Logio M (molar)) was estimated using the WSKOWWIN v1.42 model. Substances with such low
solubility often also have a high hydrophobicity and are for that reason not mobile and thus most likely not
meeting the PMOC criteria (See introduction; log Koc < 4 (pH = 4.9), degradation rate in fresh water (at 12°C)
over 40 days).

Truncating the data based on solubility resulted in a dataset of 5426 chemicals for 1588 in vitro assays, covering
162,743 data records or individual concentration-response curves. This selection of data based on defined criteria
resulted in 43% reduction of the data records.

3) All in vitro toxicity tests for which less than 50 data entries (tested chemicals) were available were
disregarded, to ensure an unbiased modelling practice. This cut-off of 50 data entries was based on the fact
that 30% of the data were used as a test dataset, and a minimum of 30 data entries are required as
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assumptions about the population distribution are not useful if the sample size does not exceed 30, since
the sampling distribution approximates the standard normal distribution (Kwak & Kim, 2017).

Truncating the data based on this criterion resulted in a dataset of 5381 chemicals for 603 assay endpoints covering
a smaller number of in vitro toxicity tests, covering 148,271 data records. This selection of data based on defined
criteria resulted in 9% reduction of the data records.

The resulting data were combined with data on nested functional groups (structural fragments), extracted from the
OECD QSAR Toolbox. Data were collected based on CAS number of chemicals. The Organic Functional Groups (OFG)
system is designed to introduce some classification and systematisation of the various structural fragments in organic
chemicals from a large database, and identify structurally similar chemicals. In total, 498 organic functional groups
or structural fragments can be identified (European Chemicals Agency, 2014). For 7,771 chemicals, 396 structural
fragments were identified in the formatted dataset based on ToxCast data, including hundreds of different dummy-
variables (0-1). Combining the three datasets (i.e. the toxicity dataset, the dataset with physicochemical parameters
and the dataset containing functional groups) and applying the three criteria (based on the Hill model being the
‘winning” model, chemical solubility, and sample size) resulted in a final dataset of 5,114 chemicals, covering over
139 thousand individual ACso values for 603 endpoints for in vitro assays. 4,780 of these chemicals are organic, of
which 4,622 are mobile (Log Koc below 4) and 1119 are persistent (half-life more than 40 days, BIOWIN3 score below
2.5) and mobile (PMOCs). Combining and formatting the datasets in the end resulted in a dataset with a broad
coverage of chemicals (in terms of functional groups and physicochemical descriptors) from which approximately
20% consists of PMOCs. More information on the applicability domain of the models can be found in paragraph 2.7.

2.2 Data quality

Due to the diverse assay technologies and study designs deployed in the ToxCast database, a highly generalized and
robust (median and median absolute deviation vs mean and standard deviation) set of calculations were performed
to obtain robust ACso values (U.S. Environmental Protection Agency (EPA), 2014). However, the ToxCast program has
acknowledged that false positive and negative hit calls are possible using the automated methods, and has thus
added a processing step to assign “flags” or “warnings” to the data (Ryan & Becker, 2017) related to a series of
quality criteria such as ‘noisy data’, ‘less than 50% efficacy’, and ‘borderline active result’. Ryan and Becker (2017)
describe possible flags in the ToxCast dataset that may be considered when analyzing a list of possible results.
However, they also note that their assignment is automated, and prone to error. Therefore, it may not be the best
practice to set hard filters based on these flags. Because of this, although multiple flags have been found in the data
(Figure 2), these were not used as criteria in formatting the data. In the figure below, the total number of registered
flags within the formatted (training) dataset are shown.
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No flag 4 58548

Less than 50% efficacy § 53709

Only highest conc above baseline, active 4 27184
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Figure 2: Frequency (number of data records out of 139,364) of flags included in the formatted dataset.

In total, for 58,548 (40.1%) individual data records out of 139,364 data records, no flags were found. For 53,709 data
records (36.8%) from individual biochemical experiments the efficacy was below 50%, for 27,194 data records
(18.6%) only the highest concentration was above the baseline, for 24,577 (16.8%) data records were borderline
active, and for 20959 data records (14.4%) the hit-call was potentially confounded by overfitting. The sum of the
classes exceed the total number of records as records can be flagged for multiple criteria. Overall, although a large
sum of flags have been reported in the data, these flags are equally distributed over non-PMOCs and PMOCs, so it is
safe to assume that the models produced in the research presented here are based on equally ‘bad’ data for both
chemical groups.

For all individual concentration-response curves the width of the confidence interval of the ACso (in log units) is
reported in the ToxCast database. These confidence intervals are divided by the corresponding (mean) ACso to be
able to compare these values across all endpoint for in vitro assays and chemicals. Below, a histogram depicting these
ratios for all individual experiments in all individual in vitro assays in which the Hill model is the model with the best
fit is shown (Figure 3). On average, the confidence interval of the data is 5% of the Log ACso. 95% of all confidence
intervals (based on 139,364 individual data records) lies within 1.5 times the log ACso. Although this may sound like
a large average deviation, this deviation may be negligible when prioritizing chemicals based on a classification using
ACso values or based on threshold levels, which may deviate multiple magnitudes.
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Figure 3: histogram depicting the ratio between the ACso and its confidence interval.

2.3 Grouping of in vitro assays

Each data record in the ToxCast database has a distinct set of annotations, i.e., descriptive features that capture a
particular aspect of the assay endpoint and in vitro assay used. Most of the 38 annotations are related to at least one
other annotation (Figure 4). Since the formatted dataset used in the present research comprised a large number of
in vitro assays, these were classified based on type and characteristics, such as intended target family, technological
target type, assay design type, signal direction, target organism, and target tissue. The type and characteristics of the
in vitro assays in the ToxCast dataset are described below (Phuong et al., 2014). These are equal to the annotations
in the formatted database.

In vitro assays capture the effects of chemicals on different types of targets related to biological processes (Figure 4).
The intended target family captures the objective (qualitative) form of the intended target (the representative genetic
family or biological process of the target (e.g., cell cycle, neurodevelopment or DNA binding)), while the technological
target type provides the measured (quantitative) form of the target used in the experimental methods (e.g.,
embryonic development, electrical activity, RNA production or molecular messenger) (Phuong et al., 2014). The assay
design type of an in vitro assay is related to the technology used to translate a biological or physical process to a
detectable signal (e.g. enzyme reporter or growth reporter), and the signal direction corresponds to the expected
direction of the detected signal in relation to the negative control (either gain or loss) (Phuong et al., 2014) (Figure
4).



BTO 2023.086 | December 2023 A deeper understanding of PMOC toxicity 14

' ™
LEVELS LEGEND
@ <O <@ O e -
ASAY ASEAY - ‘ls & conditional
REEAY COMPONENT ENDROINT O SRR suparset of
B TECHNOLOGY D FORMAT TARGET
1 1 [ TEcHNoLOGKCAL INTENDED 1
ASEAY CONTROLS C DETECTION CRGANISM . TARGET THRGET
— AT
] ASSAY
DETECTION + FORMAT
O TECHNOLDGY — B
TYPE TYPE TYPE TYPE \i
kY ’/ \
DETECTION 4 1 ~ 4 1
CELL FORMAT TYPE ! - . !
. ¥ O ¥ FAMILY
BIOLOGICAL I
J" \\ PROCESS Ld
CELL » 1 TARGET
—
S @ @ O-0O -0
. . EXPERIMENT COMPONENTS RALE GENEID  GENE GENE  GENEID
i TURE 1 CELL-FREE SYMBOL SYMEOL
TIMEPOINT  ASSAY gl;"m‘“ cELL Erl e
FOOTPRINT / 5 SROWTH . SOURCE |
x MODE G ANALYSIS
@ @ O ,
L SIGNAL NORMALIZED
CONTENT FEAGENT KEY ASSAY DIRECTION TYPE O O DATA TYPE
READOUT TYPE TYPE REAGENT TYPE E OBIECTIVE \ /
l 1 1 AMALYEES
. O ASSAY ASSAY CARECTION
O DESIGH O FUNCTION l
PARAMETER REAGENT KEY ASSAY TYPE TYPE
READOUT TYPE WALUE REAGENT SIGMAL
DIRECTION
L J
\. S

Figure 4: The assay annotation structure. The 38 annotations can be grouped into (among other things) (A) assay information, (B): technology
information, (C): detection information, (D): format information, | design information, (F) target information, and (G) analysis information
(Phuong et al., 2014).

Below, pie charts (Figure 5) show the relative frequencies of individual targets within set categories, including all
intended target families, technological target types, assay design types, signal direction, and organism-tissue type. In
vitro assay endpoints included in the formatted dataset are equally spread out over 49 intended target families
(Figure 4), while most in vitro assays in the formatted dataset have a protein (41%) or RNA (40.3%) technological
target type. The majority of in vitro assays have an assay design type related to either inducible reporters (48%), or
binding reporters (23.1%). A slight majority of all in vitro assays have a loss signal direction (54.1%), and most in vitro
assays are based on human (86.7 %) cells and mammalian liver cells (47.6 %). Human liver cells account for 47.3% of
all data records. Ideally, an equal composition of annotations is included in the training dataset in the modelling
process, as sub setting data based on an unequal distribution of annotations leads to bigger and smaller datasets,
and model performance based on smaller datasets may be lower when applying the model on chemicals outside the
training dataset.
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Figure 5: Pie charts showing the relative frequencies of targets withing categories of in vitro assays, based on intended target family, technological
target type, assay design type, signal direction, organism and tissue.
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2.4 Random Forest model

Random forest is a supervised learning algorithm using an ensemble of decision trees, capable of performing both
regression and classification tasks. The algorithm continually randomly selects a subset of physicochemical
descriptors or structural fragments/functional groups and subdivides the data based on these descriptors until a full
tree is developed and analyzed for predictive power using these physicochemical descriptors or structural
fragments/functional groups. The algorithm arrives at the best explanatory properties by always prioritizing the
decision trees with the properties that perform best to explain toxicity. The randomization process reduces bias and
decreases variance between and within trees. Random forest is, aside from its ability to build accurate classifiers, an
often used objective method for feature importance assessment and selection. To get more insight into toxicity of
chemicals (including PMOCs), random forest analyses were performed based on physicochemical characteristics and
functional groups, taking toxicological endpoints (logio-transformed ACso) as a response variable for each toxicity test
individually.

A fixed number of 5000 decision trees was used in the random forest analyses and the top physicochemical
descriptors or top 10 functional groups explaining the most variance in ACso were reported. Being a non-parametric
method, Random forest analysis does not require the response variable and/or the predictors to be normally
distributed.

The predictive power of variables within a Random Forest analysis is determined by calculating the %IncMSE (increase
in mean-squared error of the predicted values). This is a measure for the importance of the feature; if the values of
the feature are randomized in the same trees, what would be the drop in accuracy. This is the most robust and
informative value within the analysis. This value is calculated by comparing the MSE when dropping explanatory
variable (j) to overall (initial) MSEo:

(MSE; — MSE,)

%IncMSE = VISE
0

x100% [1]

where a higher number indicates a better prediction.

A disadvantage of any machine learning model, including random forest, is that it is so complicated that it can only
be applied as a computer model. It is not intuitively easy to interpret. Additionally, the random forest output does
not include quantitative regression coefficients and therefore does not provide insight into the magnitude or
direction of the observed effect in an in vitro assay. Additional multiple linear regression analyses were thus
performed to provide insight into the magnitude and direction of the relationship between toxicity (biological activity)
and continuous variables (i.e. physicochemical descriptors or functional groups).

2.5 Multiple linear regression model

Additional QSARs for toxicity (next to the random forest models) were derived by fitting the following conceptual
model to the formatted data:

Y= Pix1 + Bax; + Baxz + -+ Bpxy [2]

in which B1 to Bn represent the regression coefficients associated with the 1% to n™ X1 to X chemical property (either
a physicochemical descriptor or a functional group), and y represents the toxic potency on an endpoint in an in vitro
assay (logio-transformed ACso). To enable comparison of results between in vitro assays and in vitro assay groups,
prior to the derivation of the multiple linear regression model, the response variable (ACso) was standardized using
the z-score:
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xi—fi

z; = [3]

Si

which transforms the overall toxicity mean (X;) to 0 and the corresponding standard deviation (s;) to 1 (Eriksson et
al., 2003). Usually the values in a z-score are within -3 to 3. We derived multiple regression models separately for
each in vitro assay and in vitro assay group, that incorporated the full set of physicochemical parameters and included
at least 50 data records (see 2.1), using the /m function in R, Ver. 4.1.1 (Team, 2021). Uncomplicated models allow
for easier interpretation and are for that reason more suitable for screening-level impact assessments. Therefore no
interactions or quadratic functions were included in model derivation. Afterwards, the most influential predictors
(physicochemical parameters) of toxicity (ACso) were identified using the Relaimpo package R statistics, Ver. 4.1.1.

2.6 Model evaluation

Both the results from the Random Forest analysis and the multiple linear regression analysis were evaluated by
plotting predicted effect concentrations against the observed effect concentrations, taking the aforementioned
functional groups as explanatory variables, for all individual in vitro assay endpoints and in vitro assay groups,
separately. 70% of the data were used in a training dataset and the remaining 30% served as a test dataset. These
data were randomly selected. The models were evaluated using the coefficient of determination (R?) for the training
set(see Equation 4):

Z?=1(}’i - }71)2
S Oi— 2

R?=1
where the R?is calculated as 1 —residual sum of squares (RSS) and the total sum of squares (TSS), y; is the observed
ACso for compound |, 9; is the predicted ACso for compound |, and ¥ is the average ACso in the training set. The R?
statistics explains the variance in the response variable by the explanatory variable(s). Over the years, there has been
ample discussion on the R? threshold above which a model can be considered a good predictive model. In this study,
R?values of 0.75, 0.50, or 0.25 for response variables will be described as substantial, moderate or weak, respectively,
according to Hair et al. (2013) and Sarstedt et al (2021) (Hair et al., 2013; Sarstedt et al., 2021). The predictive power
of the model is evaluated by calculating the Q? for the test dataset:

_ Z?:l(yi - yext)z
Z?:l(Yext - yext)z

Q*=1 [5]

where the Q% is calculated as 1 — residual sum of squares (RSS) and the total sum of squares (TSS), y; is the observed
ACso for compound |, 9; is the predicted ACso for compound |, and ¥ is the average ACso in the training set. The Q2
statistic reflects predictive relevance, and measures whether a model has predictive relevance or not. Q2 values
above zero indicate that your values are well reconstructed and that the model has predictive relevance.

2.7 Applicability domain of the models

The domain of applicability is an important concept in QSARs. It allows to estimate the uncertainty of the prediction
of a particular molecule based on how similar it is to chemicals used to build the model (Weaver & Gleeson, 2008).
In this case, the applicability domain of the developed QSAR is the range of physicochemical properties (related to
PMOC-properties; mobility and persistence), and the structural information (based on structural
fragments/functional groups) on which the Random Forest model and the multiple linear regression model have
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been developed. This defines the properties of any new chemicals for which the model is applicable to make
predictions (Table x). Any predictions on new chemicals that have deviating properties, can be incorrect. The
applicability domain of the three most important physicochemical descriptors related to persistence and mobility are

described in the paragraphs below.

Table 1: Source of physicochemical properties included in the modelling process.

Property Source

Octanol-water partitioning coefficient (Kow) EPI Suite™ (experimentally based and estimated through

Soil sorption coefficient (Koc) EPI Suite™ (experimentally based or based on MCl-method) and
OPERA

Molecular weight EPI Suite™

Biodegradation rate (half life in days) OPERA (estimated half life in days based on PaDel descriptors)

Vapor pressure EPI Suite™

Functional groups Organic functional groups via OECD QSAR Toolbox

2.7.1 Soil sorption coefficient (mobility)

The soil sorption coefficient (Koc) of chemicals was included as an explanatory variable in both the Random Forest
model and the multiple linear regression model. In the formatted dataset (training dataset), we have included log Koc
values taken from two separate sources; experimental and predicted values from EPI Suite™ (KOWWIN v1.68)
(EPISKOC_EXP and EPISKOC_MCI, respectively) (US EPA, 2022), and predicted values from OPERA (OPERAKOC)
(Mansouri & Williams, 2017). While EPI Suite predicts log Koc values based on the Randi¢ Molecular Connectivity Index
(Randi¢, 2001), the OPERA model predicts log Koc values based on PaDEL descriptors (1D, 2D, 3D descriptors and
fingerprints) (Yap, 2011). If no experimental data were available for a compound (this was the case for 72125
chemicals (49.4%)), the log Koc based on the molecular connectivity index was chosen. If no data were available on
log Koc-mci, the log Koc from OPERA was taken instead. Figure 6 shows the range of log Kocs of chemicals included in
the formatted dataset, separated by data source and method. The average log Koc found in the formatted dataset is
2.66 with 95% of the log Koc falling within the 0.82 — 4.82 range, implying that the majority of the chemicals in the
formatted dataset is mobile (log Koc < 4; (Neumann & Schliebner, 2019)).
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Figure 6: Histogram depicting the range/ applicability domain of log Koc within the formatted dataset.

2.7.2 Octanol-water partitioning coefficient (mobility/bioaccumulation/bioavailability)

The octanol-water partitioning coefficient (Kow) of chemicals was included as an explanatory variable in both the
Random Forest model and the multiple linear regression model. In the formatted dataset (training dataset), we have
included log experimental and predicted Kow values from EPI Suite™ (KOWWIN v1.68) (EPISKOW_EXP and
EPISKOW_Pred, respectively) (US EPA, 2022). EPI Suite uses a “fragment constant” method to predict Kow. In the
“fragment constant” method, a molecule is divided into fragments (atoms or larger structural fragments/functional
groups) and the assigned coefficient values for each fragment are added to give the Kow estimate, which is reported
as a log. If no experimental data were available for a compound (which was the case for 3044 out of 5114 individual
chemicals), the estimated Kow Was taken as a substitute. Figure 7 shows a histogram depicting the range of log Kow of
chemicals included in the formatted dataset, separated by data source and method. The average log Kow found in the
formatted dataset is 2.16, with 95% of the log Kows falling within the -0.43 — 4.6 range. Although there has not been
a scientific consensus on threshold values for hydrophobicity/hydrophilicity, like with Ko, The compounds used in the
formatted dataset can be considered relatively hydrophilic (Log Kow < 5).
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Figure 7: Histogram depicting the range/ applicability domain of log K.ws within the formatted dataset.

2.7.3 Biodegradation rate (persistence)

The biodegradation rate (reported in half-life in days) of chemicals was included as an explanatory variable in both
the Random Forest model and the multiple linear regression model. In the formatted dataset (training dataset), we
have included biodegradation (half-life in days), estimated through OPERA. The OPERA model predicts
biodegradation rates based on PaDEL descriptors (1D, 2D, 3D descriptors and fingerprints) (Yap, 2011). Figure 8
shows a histogram depicting the range of half-lives of chemicals included in the formatted dataset. The average half-
life found in the formatted dataset is 0.92 = 8.3 days, with 95% of the half-lives falling within the 0.52 — 1.99 (3.34 —
98 days) range, implying that the chemicals in the formatted dataset are equally distributed with respect to their
biodegradability (persistent compounds have a degradation half-life in fresh or estuarine water at 12 °C that is higher
than 40 days (Neumann & Schliebner, 2019)).
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Figure 8: histogram depicting the range/ applicability domain of half lives for chemicals within the formatted dataset.

2.7.4 Vapor pressure and molecular weight

Additional to the PM-parameters included above, the vapor pressure and molecular weight of chemicals were
included as an explanatory variable in both the Random Forest model and the multiple linear regression model. In
the formatted dataset (training dataset), we have included vapor pressure taken from EPI Suite™ (MPBPWIN) and
molecular weight from EPI Suite. The MPBPWIN model predicts vapor pressure (in mmHg at 25°C) based on molecular
fragments. Figure 9A (left) shows a histogram depicting the range of the vapor pressure of chemicals included in the
formatted dataset. The average log-transformed vapor pressure found in the formatted dataset is -6.74, with 95%
of the vapor pressures falling within the -14.82 —-0.69 range. Figure 9B (right) shows a histogram depicting the range
of the molecular weight of chemicals included in the formatted dataset. The average log-transformed molecular
weight found in the formatted datasetis 2.36 (261.25 grams per mole), with 95% of the vapor pressures falling within
the 2.09 — 2.63 (123.16 — 424.39 grams per mole) range.
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formatted dataset.
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3 Results

3.1 Toxicity

In Figure 10, the distribution of all toxicity values (ACsos) across all in vitro assays and in vitro assay types is shown,
for both chemicals labeled as PMOCs as well as other chemicals. The average ACso — covering all in vitro assays and
in vitro assay types — for PMOCs was 1.73 logio UM (= umol per liter) (median: 1.33, S.D.: 1.51), or 0.937 logio mg/L
(median: 0.67, S.D.: 0.906), while the average ACso for non-PMOCs was 1. 46 logio UM (median: 1.32, S.D.: 3.6), or
0.85 logio mg/L (median: 0.69, S.D.: 2.48). Overall, ACsos (in both uM and mg/L) associated with PMOCs were higher
than ACses associated with non-PMOCs (p < 0.05, one-sided (upper-bound) t-test), giving a first indication of lower
toxicity of PMOCs, compared to non-PMQCs, as was concluded in the previous BTO report on PMOC toxicity (BTO
2023.60). However, the PMOC-group consisted of a relatively small number of individual chemicals (n = 1116), while
the non-PMOC-group consisted of a large, diverse group of chemicals (n = 3995), possibly eliciting a large variety of
effects. Additionally, no differentiation was made between in vitro assay types, covering a vast amount of different

effects.
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Figure 10: distribution of log-transformed endpoints (ACsos in uM) for PMOCs, and for chemicals not labeled as PMOCs as a histogram (left) and
boxplot (right).

In the figure and analysis above, no distinction was made between in vitro assays and — therefore — endpoint types.
To enable comparison of results between in vitro assays and in vitro assay groups, prior to the derivation of the
multiple linear regression model, the response variable (ACso) was standardized to show relative toxicity and the
relative position of the compound within the distribution of toxicities for each in vitro assay (see Equation 3). In Figure
11, the distribution of all z-transformed toxicity values (ACsos) across all in vitro assays and in vitro assay types is
shown, for chemicals labeled as PMOCs (see paragraph 2.1), and other chemicals (non PMQCs). A z value represents
the deviation of ACsos from the mean/average of all toxicity data per individual in vitro assay endpoint, expressed in
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number of standard deviation units. Although the median of z values for the PMOC and non PMOC group may differ,
the geometric average of all z values should be 0 (equal to the true average of all data). The average z value —
standardized based on all individual in vitro assays — for PMOCs was 0.031 (median: -0.23, S.D.: 0.98), which implies
that PMOCs have a slightly higher average ACso value compared to all toxicity data for all individual in vitro assay
endpoints. However, please note that z values for PMOCs may differ across individual in vitro assay endpoints, i.e.
PMOCs may be less toxic when looking at — for instance — neurodevelopment, but may appear more toxic when
looking at cytotoxicity. The average ACso for non-PMOCs was -0.0054 (median: -0.24, S.D.: 1.00), implying that non-
PMOCs may — when including all endpoints and assay types — be slightly more toxic than PMOCs in most in vitro
assays. This was confirmed by a one-sided (upper-bound) t-test (p < 0.05).
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Figure 11: distribution of log-transformed endpoints (z values) for PMOCs, and for chemicals not labeled as PMOCs as a histogram (left) and
boxplot (right)

In the random forest and linear regression analyses the functional groups/structural elements and physicochemical
descriptors taken as explanatory variables were analyzed separately, as the structural elements and topological
features of compounds in itself may be strongly correlated with physicochemical descriptors (Cocchi et al., 1999).
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3.2 Structural fragments/functional groups

3.2.1 Random Forest

In general, the Random Forest analysis for all 603 in vitro assays separately, including only the functional groups as
explanatory variables, explained on average -0.96% (median: -0.95%, S.E.: 0.004) of all variance in the toxicity data
for both PMOCs and non-PMOCs (ACsos). The highest percentage of variances explained were determined for
TOX21_PXR_viability! (9.55%), while the lowest percentage variance explained by the Random Forest model were
found for NVS_GPCR_rAdra2_NonSelective? (-7.97%). For almost 12% (11.9% - 72 assay endpoints) of all in vitro assay
endpoints organotin was identified as the most important structural fragment for the prediction of toxicity in the
Random Forest model, followed by steroids (8.5% - 52 assay endpoints), and acetals (3.1% - 19 assay endpoints).
Chemicals including an organotin fragment included covered only 1.9% of the complete formatted database,
including only 15 (out of 5114) compounds, which may have been very toxic, and covering only in vitro assay endpoint
for which a small dataset was available. A total of 114 chemicals included a steroidal structural fragment (covering
4.7% of the total dataset) and a total of 55 chemicals included an acetal (covering only 0.8% of the complete
formatted dataset). This shows that the distribution of chemicals within each individual dataset for each assay
endpoint may differ considerably and may disproportionally steer the final conclusion. However, when weighing
assay endpoints based on sample size of their respective datasets, organotin was again identified as the most
structural fragment, with assay endpoint datasets for which organotin was identified as the most predictive structural
fragment for toxicity covering over 16% of all data. Steroids again followed as the second most important structural
fragment for the prediction of toxicity (assay activity) with a total coverage of 9.2% of all formatted data, while
dithiocarbamates (and not acetals) were identified as the third most important predictor of assay activity, covering
6.2% of the complete formatted dataset.

Figure 12 shows the predicted effect concentrations (log ACses) — predicted by both Random Forest and multiple
linear regression - plotted against the observed effect concentrations. taking the aforementioned functional groups
as explanatory variables. In total, 65.6% of all individual predicted ACsos were within a factor of 5 of the observed
ACsos; 17% of the predicted datapoints were more than a factor five below the observed datapoints
(underestimated), and 17.3% were more than a factor five above the observed data (overestimated), which can be
considered high. None of the predicted datapoints were a perfect fit, which indicates that no overfitting of the model
occurs. This occurs when the model is too complex, when there are an overly large number of parameters compared
to the number of observations. In that case, the model will perform well on training data, but poorly on test data.
Although no overfitting in the model takes place, the accuracy of the random forest model, when including functional
groups as explanatory variables, is very low.

3.2.2 Multiple linear regression analysis
In general, the multiple linear regression analysis for all 603 in vitro assays, separately, including only the structural
fragments/functional groups as explanatory variables, explained on average 51.44% (median: 54.48%, S.E.: 0.042%)
of all variance in the toxicity data (ACsos), based on the adjusted R2. The highest % of variances explained were
determined for a specific in vitro assay focusing on cytotoxicity: BSK_Sag_PBMCCytotoxicity _up> (100%). However,
as fitting of the multiple linear regression model is based on only 33 data entries, this high predictability is likely due
to overfitting of the model. The lowest % variance explained by the multiple linear regression model was found for
Tanguay_ZF_120hpf_PE_up* (an in vitro assay focusing on embryonic vascular disruption) (-2.4%). Figure 12 shows

1 https://comptox.epa.gov/dashboard/assay-endpoints/TOX21_PXR_viability
2 https://comptox.epa.gov/dashboard/assay-endpoints/NVS GPCR rAdra2 NonSelective

3 https://comptox.epa.gov/dashboard/assay-endpoints/BSK SAg PBMCCytotoxicity up

4 https://comptox.epa.gov/dashboard/assay-endpoints/Tanguay ZF_120hpf PE_up
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the predicted effect concentrations (Logio ACsos) plotted against the observed effect concentrations, based on the
multiple linear regression model, taking the functional groups as explanatory variables (Equation 2). In total, 86.1%
of all individual predicted ACsos lied within a factor 5 of the observed ACsos; 7.1% of the predicted datapoints were
more than a factor five below the observed datapoints (underestimated), while 6.8% were more than a factor five 5
above the observed data (overestimated). 0.85% of the predicted datapoints were a perfect fit, which may indicate
overfitting of the model.
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Figure 12: Predicted toxicity (ACso in uM) in the training dataset by the multiple linear regression model and the Random Forest model versus
observed toxicity, based on structural fragments/functional groups, clustered per individual in vitro assay, for the training dataset only. The
middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 and 5:1 ratio.



BTO 2023.086 | December 2023 A deeper understanding of PMOC toxicity

27

The predictive power of the individual multiple linear regression models for both the training dataset and the test
dataset were evaluated by comparing predicted ACsos with observed (experimental) values (Figure 13). Here, we see
that 82.22% of all predicted data points were within a factor of five of the experimental ACsos. 6.11% of the data
points were overfitted (0-u=0; the difference between the predicted value and the observation is 0), 9.14%
underestimated (u/5 > (; ; the predicted value is more than five times lower than the observation), and 9.05%
overestimated (u*5 < (; the predicted value is more than five times higher than the observation). When we solely
look at the test dataset, we see that 61.6% of all data records were within a factor five of the experimental ACsos
(training: 87%), 19.7% of the data records in the test dataset were underestimated (training: 7.06%), 18.75% of the
data records in the test dataset were overestimated (training: 6.8%), and 0.025% of the data records in the test
dataset were overfitted (training: 7.04%). Overall, 71.6% of the variation in ACso values in the training dataset is
explained by the linear regression model (R2), when excluding interaction terms between the explanatory variables
(Figure 13). Unfortunately, it was not possible to include interaction terms in the models, as the datasets are too
limited to cover all possible combinations of functional groups/structural elements. When the model is applied to the
test data set, a negative Q> was calculated, implying that functional groups/structural fragments — including all
multiple linear regression models for all individual in vitro assays — on average did not perform well in predicting
toxicity for chemicals outside the training dataset. However, large differences exist in the predictive power of the

models across in vitro assays.
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Figure 13: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed (experimental) toxicity, based on structural
fragments/functional groups and topological parameters, for both the training dataset and test dataset. The middle dashed line represents the

1:1 ratio. The outer dashed lines represent the 1:5 and 5:1 ratio.
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In the figure below, the adjusted R? from the multiple linear regression model, based on structural
fragments/functional groups (Figure 14), is plotted against the variance explained (%) by the Random Forest model
modelled for all in vitro assays separately. The overall correlation between the R? from the multiple linear regression
analysis and the variance explained by the Random Forest model is very low, which implies that the correlation
between functional groups and toxicity can be better described by linear regression (taking into account all functional
groups and chemicals) than by Random Forest, possibly omitting any correlation between structural
fragments/functional groups and chemicals.
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Figure 14: The adjusted R? from the multiple linear regression model, based on organic structural fragments/functional groups, plotted against
the variance explained (%) by the Random Forest model, based on aforementioned descriptors, modelled for all in vitro assays separately. The
dashed line represents the 1:1 ratio.

3.3 Physicochemical descriptors

3.3.1 Principal component analysis
Principal component analysis (PCA) was conducted to explore the characteristics of the physicochemical descriptors
(log Koc, log Kow, biodegradation rate, vapor pressure, and molecular weight) prior to two analyses (Random Forest
Analysis and multiple linear regression analysis), as these descriptors were continuous (in contrast to the binary
structural fragment descriptors). The PCA was performed based on the scaled values of the six variables, i.e., the five
physicochemical descriptors, and the log-transformed ACso values.

Prominent principal components (PCs) emerged, with PC1 explaining 30.98%, PC2 explaining 24.77%, and PC3
explaining 16.69%, as shown in Figure 15. The score plots did not indicate any grouping among the data sets or
differences between PMOCs and non-PMOCs groups, suggesting the six variables did not have enough information
to be categorized into multiple groups. The biplot with PC1 and PC2 (Figure 15A) indicates that the molecular weight
was positively associated with PC2. The other five factors had negative associations with PC2; the log Koc and log Kow
were negatively related to PC1, and the log-transformed ACso values were positively associated with PC1, together
with the vapor pressure and the biodegradation rate. The results of PCA revealed how the six variables influenced
each principal component and that a part of the variables had similar information. Further analysis would be required
to investigate more precise relationships between the variables.
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Figure 15: Principal component analysis (PCA) biplots based on PC1 and PC2 (A) and PC2 and PC3 (B). Each data point corresponds to a data
record consisting of the six types of data. The colors of data points represent the chemical groups (PMOCs or no-PMOCs), according to the
classification described in section 2.1.

3.3.2 Random Forest
In general, the Random Forest analysis for all 603 in vitro assays separately, including the five most important
predictive physicochemical descriptors (log Koc, log Kow, biodegradation rate, vapor pressure and molecular weight)
as explanatory variables resulted in explaining 15.78% (median: 14.37, S.E.: 0.03) of all variance in the toxicity data
(ACsos). The highest percentage of variances explained were determined for OT_ER_ERaERa_0480° (nuclear receptor
type) (83.98%), while the lowest percentage variance explained by the Random Forest model were found for
NVS_ENZ_hEphA1_Activator® (-52.78). Figure 16 shows the predicted effect concentrations (logio ACsos) — predicted
by both Random Forest and multiple linear regression - plotted against the observed effect concentrations, based on
Random Forest analysis, taking the aforementioned five physicochemical parameters as explanatory variables, for
both signal directions separately. In total, 93% of all individual predicted ACsos were within a factor 5 (which equals
to approximately 5% of the complete toxicity data range) of the observed ACsos; 2.4% of the predicted datapoints
were more than a factor five below the observed datapoints (underestimated), while 4.6% were more than a factor
five above the observed data (overestimated). 0.05% of the predicted datapoints were a perfect fit, which may

indicate overfitting of the model.

3.33 Multiple linear regression analysis
In general, the multiple linear regression analysis, including the five most important predictive physicochemical
descriptors (log Koc, log Kow, biodegradation rate (half-life in days), vapor pressure and molecular weight) as
explanatory variables resulted in explaining 14.5% (median: 12%, S.E.: 0.01%) of all variance in the toxicity data
(ACsos), based on the adjusted R2 The highest % of variances explained were determined for an in vitro assay focusing
on a background reporter gene: TOX21_GR_BLA_Agonist_ch1 (62.6%), while the lowest % variance explained by the

s CompTox Chemicals Dashboard (epa.gov)
s CompTox Chemicals Dashboard (epa.gov)
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multiple linear regression model was found for another in vitro assay focusing on a background reporter gene:
ATG_M 32 _CIS_dn (-15%). Figure 16 shows the predicted effect concentrations (logio ACsos) plotted against the
observed effect concentrations, based on the multiple linear regression model, taking the aforementioned five
physicochemical parameters as explanatory variables (Equation 2). In total, 69% of all individual predicted ACsos lied
within a factor 5 of the observed ACsos; 15.1% of the predicted datapoints were more than a factor five below the
observed datapoints (underestimated), while 15.9% were more than a factor five above the observed data
(overestimated). None of the predicted datapoints were a perfect fit.

Based on the total dataset, linear regression analysis (R?s) had a lower predicting power compared to the random
forest analyses for the same toxicity tests. This indicates that there probably is no linear relationship between
physicochemical descriptors and the response variable as the modelling exercise was based on single linear responses
only, disregarding any interaction between parameters or non-linear responses. The linear regression coefficients for
the 603 analyzed in vitro assays, taking standardized ACso values as response variables, were negative for log Ko, log
Kow, and molecular weight, with median regression coefficients of -0.04, -0.03, and -0.002 respectively, based on the
absolute values (Figure 17). The median regression coefficients for log Kow, log Ko, and biodegradation rate all
significantly differed from zero (p-value < 0.05; One sample t-test). Only the median value of regression coefficients
for biodegradation rate (half-life in days), and vapor pressure were positive (0.44 and 0.02, respectively), however
median values for both vapor pressure and molecular weight did not differ significantly from zero (p > 0.05; One
sample t-test). Hence, in general, the majority of the investigated physicochemical properties were inversely related
to toxicity (expressed as ACso, with a higher ACso indicating a lower toxicity and a lower Koc/Kow indicating a higher
mobility), albeit to varying degrees. However, biodegradation rate (half-life in days) in general was proportionally
related to ACso values, implying that more persistent chemicals (higher half-life) tend to be less toxic (higher ACso).
These observations with respect to mobility and persistence are in line with conclusions drawn in the previous BTO-

report on PMOC toxicity.

Prediction method
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Predicted AC50 in uM (based on bioassay only)
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Figure 16: Predicted toxicity (ACso in uM) by the multiple linear regression model and the Random Forest model versus observed toxicity, based
on five physicochemical parameters (Log Kow, Log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per individual in
vitro assay. The dashed lines represent the 1:5 line.
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When standardizing the physicochemical descriptors by subtracting the values by the mean value per toxicity test
and dividing the result by the standard deviation, rescaling the data to have a mean of zero and a standard deviation
of one, we see a similar pattern, albeit more spread out than the unstandardized, absolute values . The influence of
physicochemical descriptors that normally cover a large range of values (such as molecular weight, boiling point and
biodegradation rate) become more apparent, as the values on the y-axis now inform us about the change in response
(toxicity) when increasing the physicochemical descriptor by one standard deviation (i.e., a relative increase in
descriptor value, rather than an absolute increase in descriptor value).

Absolute physicochemical descriptors
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Molecular weight 1
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Log Kow 1
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Figure 17: Boxplots depicting the distribution of regression coefficients (minimum value, 25th percentile, median value, 75th percentile and
maximum value) for vapor pressure (in mmHg), molecular weight (in g/mol), log octanol-water partition coefficient (log Ko.w), log sorption
coefficient to organic carbon (log Koc), boiling point (in °C), and biodegradation rate (half-life in days) resulting from the multiple linear regression
analysis for 603 in vitro assays. ***; u#0, p<0.001, **; u#0,p<0.01, *; u#0, p<0.05, -; u=0, p>0.05. Parameters with significantly similar
distributions of regression coefficients were assigned a similar letter.

In the figure below, the adjusted R?, from the multiple linear regression model, based on the five physicochemical
descriptors (log Ko, log Kow, vapor pressure, molecular weight, and biodegradation (half-life in days)) (Figure 18), is
plotted against the variance explained (%) by the Random Forest model modelled for all in vitro assays separately.
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Figure 18: The adjusted R?, from the multiple linear regression model, based on five physicochemical descriptors (log Ko, log Kow, vapor pressure,
molecular weight, and biodegradation (half-life in days)), plotted against the variance explained (%) by the Random Forest model, based on
aforementioned descriptors, modelled for all in vitro assays separately.
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3.4 Invitro assay types

After grouping in vitro assays based on five category types (intended target family, technological target type, assay design type, signal direction, and organism-tissue
combination), Random Forest analysis and the multiple linear regression analysis was based on the five physicochemical descriptors, as these showed to be the most
consistent explanatory parameters, compared to taking structural fragments/functional groups as explanatory variables. Table 2 shows an overview of all results concerning
both the Random Forest analysis and the multiple linear regression analysis. Overall, the best fits for both the Random Forest analysis and multiple linear regression analysis
—when including physicochemical properties as explanatory variables — were obtained when categorizing the in vitro assays based on technological target type, which may
be explained by an overlap in specific toxic modes of actions and specific target types used in the categorization of in vitro assays. Random Forest analysis in this case
explained on average 55.27% of all variance in toxicity (ACso) data, while multiple linear regression analysis on average explained 13.3% of all variance in toxicity (ACso)
data. However, when looking specifically at the percentage of predictions within a factor of five of experimental observations, the best Random Forest fit was obtained
when categorizing assays based on organism-tissue combination, implying that sometimes interspecies differences may be greater and more important than inter-effect
differences within a species. More details with respect to the results for each category can be found in Appendix I.I.

Table 2: Summary showing all results concerning both the Random Forest model and the multiple linear regression model, based on five physicochemical descriptors, when grouping in vitro assays based on five
in vitro assay category types. Summary statistics include average % of variance explained, median % of variance explained (+ S.E.), highest variance explained, lowest variance explained, % of data points
overfitted, % of data points over- or underestimated and % of observations within a factor of five of the predicted values. The third table shows the number of data point overestimated, underestimated,
overfitted, and predictions within a factor of five of the observed data when clustering the data based on assay categories for the test and training dataset when applying the linear regression model.

Random Forest model Linear regression model
Category Mean Median Lowest Highest Target with Target with Mean Median Lowest Highest Target with Target with
variance variance variance variance lowest highest variance variance variance variance lowest highest
explained explained explained explained variance variance explained explained explained explained variance variance
(%) (%) (%) (%) explained (%) (%) (%) (%) explained
Intended target 28,01% 31,22% -26,07% 84,70% Membrane Neurodevel 9,74% 9,01% -3,98% 32,04% Membrane Mitochondria
family (+0,06%) protein opment (+0,02%) protein
Technological target 55,27% 54,85% 27,31% 84,70% Cellular Electrical 13,30% 10,19% 0,95% 31,19% DNA Molecular
type (£0,04%) activity (+0,02%) messenger
Assay design type 42,73% 38,25% 15,15% 84,70% Enzyme Functional 12,69% 11,30% 1,52% 32,04% Biochemical Respirometric
(£0,06%) reporter reporter (+0,02%) reporter reporter
Signal direction 41,71% 41,71% 41,63% 41,78% Gain Loss 6,36% 6,36% 4,29% 8,43% Gain Loss
(+0,00%) (£0,01%)
Organism tissue 37,05% 41,36% -25,56% 83,24% Human brain Rat cortical 10,06% 8,99% -10,06% 31,81% Guinea pig Rat kidney

(£0,07%) (+0,02%) spleen
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Category

Intended target
family

Technological
target type

Assay design type
Signal direction

Organism-tissue
combination

Category
Intended target
family

Technological
target type

Assay design type
Signal direction

Organism-tissue
combination

%
Overestimated
(> 5x)

8,76%

9,25%

9,81%
11,50%

8,09%

Overestimated

15,7% (+4,0%)

18,4% (+5,9%)

17,0% (+4,4%)
17,8% (+2,2%)

16,0% (+4,8%)

A deeper understanding of PMOC toxicity

Random Forest model

%
Underestimated
(>5x)

6,95%

7,40%

7,77%
9,35%

6,37%

Underestimated

12,6% (+7,5%)

19,2% (+12,9%)

18,4% (+7,4%)
23,5% (+12,8%)

16,2% (£10,6%)

% Overfitted

0,07%

0,00%

0,00%
0,00%

0,07%

Test

Overfitted

0,0% (£0,00%)

0,00% (+0,00%)

0,00% (+0,00%)
0,00% (+0,00%)

0,00% (+0,00%)

% Observations
within a factor 5
of predicted
values

84,28%

83,35%

82,42%
79,15%

85,54%

Between

71,7% (+11,0%)

62,4% (+18,6%)

64,6% (£11,3%)
58,7% (+15,0%)

67,9% (£14,9%)

%
Overestimated
(> 5x)

15,91%

16,14%

16,14%
16,41%

15,89%

Overestimated

17,2% (+6,2%)

19,1% (+6,0%)

16,8% (+5,4%)
17,8% (+2,0%)

17,4% (+6,7%)

34

Linear regression model

% % Overfitted
Underestimated
(>5x)
21,25% 0,00%
19,85% 0,00%
21,75% 0,00%
21,82% 0,00%
21,01% 0,00%
Training
Underestimated Overfitted
16,0% (+9,6%) 0,00% (+0,00%)
19,8% (+12,8%) 0,00% (+0,00%)
19,7% (16,7%) 0,00% (+0,00%)

23,6% (+12,6%)

16,2% (+9,9%)

0,00% (+0,00%)

0,00% (+0,00%)

% Observations
within a factor 5
of predicted

values
62,48%
64,01%
62,11%
61,78%
63,11%
Between

66,8% (£12,9%)

61,1% (+18,1%)

63,6% (+11,6%)
58,6% (+14,6%)

66,4% (+15,3%)
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4 Overall discussion

The present study was a continuation of the previous project “BTO 2023.60 - Zijn persistente mobiele stoffen minder
giftig?”, in which correlations between physicochemical descriptors (i.e. log Kow, log Ko, biodegradation rate, vapor
pressure, and molecular weight) were explored. A significant inverse correlation between mobility (log Koc) and
toxicity was observed, indicating that a higher mobility results in a lower toxicity of the compound. However, in this
previous study, all in vitro assay endpoints were analyzed individually and no special attention was given to
differences and similarities with respect to toxicity when clustering in vitro assays based on in vitro assay type and
toxicological mechanism. Additionally, only a relatively small subset of water relevant PMOCs were used as input in
the modelling exercises.

The study presented in the current report aimed to gain a deeper understanding of PMOC toxicity, allowing the
signaling of new and potentially hazardous PMOCs that may emerge in the aquatic environment, based on their
chemical structures and physicochemical properties, by looking into the predictive power of both Random Forest and
multiple linear regression models for a large set of toxicity data (including PMOCs). Additionally, to allow for
sufficiently large datasets for model training and in vitro data were clustered based on assay type, based on
annotations as described in paragraph 2.3 (intended target family, technological target type, assay design type, signal
direction and organism/tissue combination). As molecular structure (i.e. structural alerts or functional groups) has
been associated with bioactivity, in the present study structural fragments and structural fragments/functional
groups were taken as predictors in both the multiple linear regression analyses, as well as the Random Forest models.
Random Forest performed relatively well in predicting ACso values from ToxCast, when taking physicochemical
descriptors as explanatory variables for some individual assays (mean variance explained: 15.8%, max: 84%, when
looking at individual assay types), compared to multiple linear regression analysis (mean R?: 14.5% , max R%: 62.9%),
implying that any correlations between five physicochemical parameters and toxicity are not linear. Although R?s
were higher when taking structural fragments as explanatory variables in both models, Q?s remained low, implying
that multiple linear regression analysis also did not perform well when using the models to predict toxicity for
compounds outside the training dataset, based on structural fragments. In general, the Random Forest analysis
performed poorly, compared to the multiple linear regression analysis. This poor performance may have multiple
explanations. Firstly, individual datasets may have been too small, although a cut-off point of 50 data rows was used
as a criterion. Bigger datasets did provide a better model fit (i.e. a higher percentage of the variance explained by the
Random Forest model), when analyzing all in vitro assays separately. However, the highest variance explained by the
Random Forest model was only 6%, still indicating a poor fit of the model when including structural fragments and
functional groups as explanatory variables. Secondly, the models may contain a large proportion of irrelevant features
(functional groups), in which case the model struggles to learn the underlying patterns in the data. As the initial
dataset in the present study contains a maximum of 396 features (structural properties and functional groups), the
model may have difficulties in identifying specific functional groups that may be useful in classifying the data based
on ACso. Finally, the ACso data itself is expected to be noisy. These toxicity data have been collected by multiple
laboratories, scientists and analysts throughout the years, using different protocols. Although multiple flags (warning
assigned by ToxCast — See paragraph 2.2), have been found in the data, these were in this research not used as
criteria in truncation if the data, as these warnings covered over 50% of the complete dataset. The noise in the data
may be reduced by standardizing the data (equation 3). However, standardizing the data makes the data less easy to
interpret, as it adds complexity to the data; retransforming the data to interpret the results requires an extra step.
Furthermore, the analyses performed in the present study may be less sensitive to noise in the data when using a



BTO 2023.086 | December 2023 A deeper understanding of PMOC toxicity 36

categorical (low toxicity, medium toxicity, and high toxicity) response variable rather than a continuous response
variable.

Although a bit better than the Random Forest model, the multiple linear regression analysis also did not perform
great when including functional groups/structural fragments as explanatory variables. Overfitting occurs more often,
especially in cases where the number of data entries is limited, as we included hundreds of different dummy-variables
(0-1) (See 2.1), instead of five continuous variables. Predictions from such a rank-deficient fit (i.e. a fit on a dataset
for which not enough observations are available per factor level) may be underestimating or overestimating.
Additionally, in order to provide a reliable toxicity prediction, large amounts of data are needed to cover a wide
variety of structural properties and functional groups, which was not always the case for all in vitro assays. Although,
especially for smaller datasets, no good fits were obtained for all in vitro assays, more reliable results for regression
models including functional groups as explanatory variables may be obtained when dividing ACso in two or three
toxicity classes, as is typically done in commercial read-across and QSAR software (Chakravarti et al., 2012; Ciallella
et al., 2022; Krewski et al., 2020; Russo et al., 2019). Additionally, non-linear models or the inclusion of interaction
terms (combinations of structural fragments, which may have a synergistic toxic effect) may also increase the fit of
linear regression models. According to work by Calleja et al. (1994b) non-linear models taking molecular structure as
explanatory variables appear to have a better fit than linear models. In the current report, models were based on
functional groups, represented as dummy variables, representing the absence or presence of a certain functional
group/structural fragment (See paragraph 2.1). Regression coefficients associated with this qualitative information
tells us the average increase (or decrease) of (log-transformed) toxicity in case the functional group is present. In the
case of a significant decrease in toxicity associated with a dummy variable, the functional variable can be considered
de-activating.

In the current report and modelling exercise ACso data from ToxCast were used as response variables in both the
Random Forest analysis, as well as the multiple linear regression analysis. Although these data provide information
on bioactivity and potential mechanistic pathways that they act on, these data do not indicate hazard or an adverse
effect in vivo (Huang et al., 2016). These data are typically used to prioritize chemicals based on expected bioactivity
when in vivo toxicity data are lacking. To evaluate the potential hazard of a compound for which toxicity data are
lacking, ToxCast (activity) data may be linked to biological events through adverse outcome pathways (AOPs). An AOP
is a construct describing a sequential chain of causally linked biological events at different levels that lead to adverse
effects. ToxCast data (on in vitro assays) may be clustered based on assay data corresponding to molecular initiating
events (MIEs) in an AOP framework for a certain adverse effect as was done for thyroid disease by Nelms et al. (2018).
There, ToxCast data were combined with chemical structure data (structural alerts) from OECD QSAR Toolbox and
clustered corresponding to a set of MIEs within the AOP for hepatic steatosis.
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5 Conclusions

In the present study, we used multiple linear regression modelling and Random Forest analysis to explore whether
toxicity (ACso values) can be predicted based on physicochemical characteristics and structural properties of
chemicals, and to evaluate if sub-setting in vitro assay data based on assay characteristics aid in predicting toxicity
(bioactivity) . In general, multiple linear regression explained more variance in toxicity when using functional
groups/structural fragments (median over all individual in vitro assay endpoints: 54.5%) rather than physicochemical
descriptors (median over all individual in vitro assay endpoints: 14.5%).

In addition to exploring the predictive power of Random Forest models and multiple linear regression models based
on physicochemical characteristics, in the current study, in vitro assays were clustered based on assay type (intended
target family, technological target type, assay design type, signal direction and organism-tissue combination), to
investigate the impact of assay annotations on the predictability of ACses. Grouping based on technological target
type resulted in the highest predictability of toxicity in both models, with an average of 55.27% of variance explained
in the Random Forest model, and an average of 13.30.% explained in the multiple linear regression model). Although
grouping of in vitro assays considerably increased the number of data rows in the training datasets used in the
modelling exercises, the percentages of variances explained by both models when taking the physicochemical
descriptors as explanatory variables, decreased significantly compared to grouping based on individual in vitro assays.
Additionally, no considerable differences in the average percentages explained by the Random Forest model and
multiple linear regression model could be observed when grouping the in vitro assays based on the five categories,
based on assay annotations (intended target family, technological target type, assay design type, signal direction,
organism-tissue combination). This was likely due to intercorrelation between in vitro assays within the different
categories (e.g., the gross majority of in vitro assays in the neurodevelopment intended target family also tend to be
in electrical activity technological target type). This implies that none of the individual categories included in this
study to cluster the in vitro assays were suitable for the prediction of toxicity of chemicals. Nevertheless, for the large
majority of individual in vitro assays as well as for groups of in vitro assays based on aforementioned grouping criteria,
more than 80% of all predicted data points (by Random Forest based on physicochemical characteristics and by
multiple linear regression based on functional groups) fell within a factor of five of the experimental data points,
implying that the physicochemical descriptors and functional groups of compounds may still provide enough
information to categorize toxicity into toxicity classes (based on ACsos).

Although in the present study we gained a deeper understanding of (PMOC) toxicity using the ToxCast database, the
aforementioned limitations (i.e. data limitation, rank deficiency and intercorrelation) of the models used hamper
their applicability in the (drinking) water sector. In vitro assay endpoints included in the ToxCast database vary
considerably in e.g. target type, tissue tested and assay design type and structural elements in itself may not solely
explain differences in activity in these assays or there are still insufficient data available to derive reliable correlations.
In contrast, physicochemical descriptors (especially the ones related to persistence and mobility) as explanatory
variables in many cases (assay endpoints) provided sufficiently reliable predictions for activity in the assay. Just like
in the previous study (See report BTO 2023.060), more mobile, more persistent compound tend to be less toxic.
Note, however, that the reliability of the predictors decreased when assay endpoints were clustered based on one
of the five aforementioned categories, implying that variation in ACsos between in vitro assay endpoint are greater
than the variation between chemicals within assay endpoints. However, structural elements and physicochemical
descriptors of chemicals for models of a subset of in vitro assay endpoint did provide sufficient information to predict
ACsos and ACso classes (i.e. ‘low’, ‘medium’, ‘high’). For this reason, in future research we foresee the development
of a tool to predict toxicity classes, rather than exact toxicity (ACso) values for this particular subset of endpoints.
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| Appendix : Individual Random Forest model
and linear regression model by assay type.

Ll Intended target family

The intended target family attempts to represent the common targets across assay endpoints. These families pertain
to gene families and include morphological and cell cycle concepts (U.S. EPA, 2015).

Random Forest model

In general, the Random Forest analysis, including the five most important predictive physicochemical descriptors (log
Koc, log Kow, biodegradation rate, vapor pressure and molecular weight) as explanatory variables resulted in explaining
28.01% (median: 31.22%, S.E.: 0.06) of all variance in the toxicity data (ACsos) when categorizing in vitro assays based
on intended target family. Overall, when grouping in vitro assays based on intended target family, the highest
percentage of variances explained by the Random Forest model were determined for in vitro assays related to
neurodevelopment (84.74%), while the lowest % variance explained by the Random Forest model were found for in
vitro assays related to membrane proteins (-26.07%) (Table 1). This implies that physicochemical descriptors included
in the present study correlated strongly with neurodevelopmental activity AND that variation in ACso values in the
neurodevelopment dataset was proportional to or higher than the variation of physicochemical descriptors from
chemicals in the dataset. Furthermore, this also implies that using a Random Forest model to predict toxicity for the
subset of chemicals and in vitro assay endpoint focusing on membrane proteins result in a prediction that is worse
than taking the average of all ACso values. Figure 19 shows a heatmap visualizing to which extent the five
physicochemical descriptors of interest correlate with toxicity for assays within one of the intended target families.
The increase in MSE (%IncMSE) (Equation 1) corresponds to the extent to which the physicochemical parameter
explains the variance in the Random Forest model.
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Figure 19: Heatmap visualizing the increase in MSE (= to which extent the variable explains the variance in toxicity in the Random Forest model)
for the five individual physicochemical parameters (y-axis), when grouping the in vitro assays based on intended target family (x-axis).

Figure 20 shows the predicted effect concentrations (logio ACsos) plotted against the observed effect concentrations,
based on Random Forest analysis, taking the aforementioned five physicochemical parameters as explanatory
variables, for all individual intended target families separately. In total, 84.3% of all individual predicted ACsos lied
within a factor 5 of the observed ACsos; 7% of the predicted datapoints were more than a factor five below the
observed datapoints (underestimated), while 8.8% of all datapoints were more than a factor five above the observed
data (overestimated). 0.07% of the predicted datapoints were a perfect fit, which may indicate overfitting of the
model. Individual observed-predicted plots can be found below.
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Figure 20: Predicted toxicity (ACso in uM) by the Random Forest model versus observed toxicity, based on five physicochemical parameters (log
Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on intended target family). The
middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5 times
higher/lower than the observed data).

Multiple linear regression model

In general, the multiple linear regression analysis, including the five most important predictive physicochemical
descriptors (log Koc, log Kow, biodegradation rate (half-life in days), vapor pressure and molecular weight) as
explanatory variables resulted in explaining 9.7% (median: 9.0%, S.E.: 0.02%) of all variance in the toxicity data (ACsos)
when categorizing in vitro assays based on intended target family, based on the adjusted R2. Overall, when grouping
bioassays based on intended target family, the highest % of variances explained were determined for in vitro assays
related to mitochondrial target type (32%), while the lowest % variance explained by the multiple linear regression
model were found for in vitro assays related to membrane proteins (-4%) (Table 1). Figure 21 shows the predicted
effect concentrations (logio ACsos) plotted against the observed effect concentrations, based on the multiple linear
regression model, taking the aforementioned five physicochemical parameters as explanatory variables (Equation 2),
for all individual intended target families separately. In total, 62.84% of all individual predicted ACsos lied within a
factor 5 of the observed ACsos; 21.25% of the predicted datapoints were more than a factor five below the observed
datapoints (underestimated), while 15.91% of all datapoints were more than a factor five above the observed data
(overestimated). None of the predicted datapoints were a perfect fit.
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Figure 21: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed toxicity, based on five physicochemical
parameters (log Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on intended
target family). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values
are 5 times higher/lower than the observed data).

Figure 22 shows the predicted effect concentrations (logio ACsos) plotted against the observed effect concentrations,
based on both the multiple linear regression model and the Random Forest model, covering all individual intended
target families. Overall, the Random Forest model had a higher predictive power (R =0.7, Figure 20) than the multiple
linear regression model (R? = 0.00051, Figure 21), implying that the correlation between toxicity and the five
physicochemical parameters of chemicals may be non-linear, when subdividing in vitro assays based on intended
target family. Below, all individual predicted-observed plots when categorizing based on individual intended target

families are shown (Figure 23).
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Figure 22: Predicted toxicity (ACso in uM) by the multiple linear regression model and the Random Forest model versus observed toxicity, based
on five physicochemical parameters (Log Kow, Log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay
type (based on intended target family). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1
ratio (the predicted values are 5 times higher/lower than the observed data).



BTO 2023.086 | December 2023 A deeper understanding of PMOC toxicity a4

apolipoprotein background measurement catalase
R’ =0.094 E / R?=0.002
RMSE =0.787 ’ RMSE = 0.726
N=94 4 s 1 N=2111 ¢ : R?=0.13
; J . |5 | RMSE = 0.735
e . N=30
H A= . H
2 Sl g .
8 S 8 .
< ; < < Lo .
H . H 3 s
£ . [ a . .
. .
¥ . i exe °l e
. - J .
; .
cell adhesion molecules. cell cycle cell morphology
R*=0.11 RY=0.021 N RP=0.11
RMSE = 0.645 RMSE = 1.16 FRrARF RMSE =0.747
N=2729 N = 47468 i N=1153
] - € £ "
2 8 g
2 ' S E
i . i i
$ i i i .
& a a
. 1 1
. .
¥
cell proliferation channel 1 channel 2
R' =027 J RY=0.088 S Rim0.42
RMSE =0.489 i | RMSE=102 RMSE = 1.17
N=42 : / N=6197 ] ; N = 9509
g y 2 H
g ¢ g
i H g
3 g s
& . . e &
P .
' ACED inulM J\CC‘G.IF uM

ACSQ in ub

Figure 23: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed toxicity, based on five physicochemical
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intended target family). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted
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LIl Technological target type

The technological target type attempts to represent the individual targets across assay endpoints. These families
pertain to gene families and include morphological and cell cycle concepts (U.S. EPA, 2015).

Random Forest model

In general, the Random Forest analysis, including the five most important predictive physicochemical descriptors (log
Koc, log Kow, biodegradation rate, vapor pressure and molecular weight) as explanatory variables resulted in explaining
55.27% (median: 54.85%, S.E.: 0.04%) of all variance in the toxicity data (ACsos) when categorizing in vitro assays
based on technological target type. Overall, when grouping in vitro assays based on technological target type, the
highest % of variances explained were determined for in vitro assays focusing on electrical activity (84.7%), while the
lowest % variance explained by the Random Forest model was found for cellular in vitro assays (27.31%) (Table 1).
This implies that physicochemical descriptors included in the present study correlated strongly with cellular in vitro
assays AND that variation in ACso values in the dataset with cellular assays was proportional to or higher than the
variation of physicochemical descriptors from chemicals in the dataset. Figure 24 shows a heatmap visualizing to
which extent the five physicochemical descriptors of interest correlate with toxicity for assays within one of the
technological target types. The increase in MSE (%IncMSE) (Equation 1) corresponds to the extent to which the
physicochemical parameter explains the variance in the Random Forest model.
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Figure 24:Heatmap visualizing the increase in MSE (= to which extent the variable explains the variance in toxicity in the Random Forest model)
for the five individual physicochemical parameters (y-axis), when grouping the in vitro assays based on intended target family (x-axis).
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Figure 25 shows the predicted effect concentrations (log ACsos) plotted against the observed effect concentrations,
based on Random Forest analysis, taking the aforementioned five physicochemical parameters as explanatory
variables, for all technological target types separately. In total, 83.35% of all individual predicted ACsos lied within a
factor 5 of the observed ACsos; 7.4% of the predicted datapoints were more than a factor five below the observed
datapoints (underestimated), while 9.25% of all datapoints were more than a factor five above the observed data
(overestimated). None of the predicted datapoints were a perfect fit. Individual observed-predicted plots can be

found below.
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Figure 25: Predicted toxicity (ACso in uM) by the Random Forest model versus observed toxicity, based on five physicochemical parameters (Log
Kow, Log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on technological target type).
The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5 times
higher/lower than the observed data).

Multiple linear regression model

In general, the multiple linear regression analysis, including the five most important predictive physicochemical
descriptors (log Ko, log Kow, biodegradation rate (half-life in days), vapor pressure and molecular weight) as
explanatory variables resulted in explaining 13.3% (median: 10.2%, S.E.: 0.02%) of all variance in the toxicity data
(ACsos) when categorizing in vitro assays based on technological target type, based on the adjusted R2. Overall, when
grouping in vitro assays based on technological target type, the highest % of variances explained were determined
for in vitro assays related to molecular messaging (31.2%), while the lowest % variance explained by the multiple
linear regression model were found for in vitro assays related to DNA (0.95%) (Table 1). Figure 26 shows the predicted
effect concentrations (logio ACsos) plotted against the observed effect concentrations, based on the multiple linear
regression model, taking the aforementioned five physicochemical parameters as explanatory variables (Equation 2),
for all individual technological target types, separately. In total, 64% of all individual predicted ACsos lied within a
factor 5 of the observed ACsos; 19.85% of the predicted datapoints were more than a factor five below the observed
datapoints (underestimated), while 16.1% of all datapoints were more than a factor five above the observed data
(overestimated). None of the predicted datapoints were a perfect fit (overfitted).
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Figure 26: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed toxicity, based on five physicochemical
parameters (log Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on technological
target type). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values
are 5 times higher/lower than the observed data).

Figure 27 shows the predicted effect concentrations (logio ACsos) plotted against the observed effect concentrations,
based on both the multiple linear regression model and the Random Forest model, covering all individual intended
target families. Overall, the Random Forest model had a higher predictive power (R?=0.7, Figure 25) than the multiple
linear regression model (R? = 0.00078, Figure 26), implying that the correlation between toxicity and the five
physicochemical parameters of chemicals may be non-linear, when subdividing bioassays based on technological

target type.
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Figure 27: Predicted toxicity (ACso in uM) by the multiple linear regression model and the Random Forest model versus observed toxicity, based
on five physicochemical parameters (log Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type
(based on technological target family). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1
ratio (the predicted values are 5 times higher/lower than the observed data).
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Figure 28: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed toxicity, based on five physicochemical
parameters (log Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per individual in vitro assay type (based on
technological target type). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio.
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L Assay design type

The assay design type represents the method that a biological or physical process is translated into a detectable
signal. (U.S. EPA, 2015). The assay design type annotation captures the method by which the technological target is
measured.

Random Forest model

In general, the Random Forest analysis, including the five most important predictive physicochemical descriptors (log
Koc, log Kow, biodegradation rate, vapor pressure and molecular weight) as explanatory variables resulted in explaining
42.73% (median: 38.25%, S.E.: 0.06%) of all variance in the toxicity data (ACsos) when categorizing in vitro assays
based on assay design type. Overall, when grouping in vitro assays based on assay design type, the highest % of
variances explained were determined for in vitro assays characterized as functional reporters (84.65%), while the
lowest % variance explained by the Random Forest model was found for bioassays characterized as enzyme reporters
(15.15%) (Table 1). This implies that physicochemical descriptors included in the present study correlated strongly
with in vitro assays characterized as functional reporters AND that variation in ACso values in the dataset with
functional reporter assays was proportional to or higher than the variation of physicochemical descriptors from
chemicals in the dataset. Figure 29 shows a heatmap visualizing to which extent the five physicochemical descriptors
of interest correlate with toxicity for assays within one of the assay design types. The increase in MSE (%IncMSE)
(Equation 1) corresponds to the extent to which the physicochemical parameter explains the variance in the Random
Forest model.

Vapour pressure =
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Figure 29: Heatmap visualizing the increase in MSE (= to which extent the variable explains the variance in toxicity in the Random Forest model)
for the five individual physicochemical parameters (y-axis), when grouping the in vitro assays based on assay design type (x-axis).
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Figure 30 shows the predicted effect concentrations (logio ACsos) plotted against the observed effect concentrations,
based on Random Forest analysis, taking the aforementioned five physicochemical parameters as explanatory
variables, for all assay design types separately. In total, 82.4% of all individual predicted ACsos were within a factor 5
of the observed ACsos; 7.8% of the predicted datapoints were more than a factor five below the observed datapoints
(underestimated), while 9.8% of all datapoints were more than a factor five above the observed data (overestimated).
None of the predicted datapoints were a perfect fit. Individual observed-predicted plots can be found below.
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Figure 30: Predicted toxicity (ACso in uM) by the Random Forest model versus observed toxicity, based on five physicochemical parameters (log
Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on assay design type). The middle
dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5 times higher/lower
than the observed data).

Multiple linear regression model

In general, the multiple linear regression analysis, including the five most important predictive physicochemical
descriptors (log Koc, l0og Kow, biodegradation rate (half-life in days), vapor pressure and molecular weight) as
explanatory variables resulted in explaining 12.7% (median: 11.3%, S.E.: 0.02%) of all variance in the toxicity data
(ACsos) when categorizing in vitro assays based on assay design type, based on the adjusted R2. Overall, when grouping
in vitro assays based on assay design type, the highest % of variances explained were determined for in vitro assays
characterized as respirometric reporters (32%), while the lowest % variance explained by the multiple linear
regression were found for in vitro assays characterized as biochemical reporters (1.5%) (Table 1).

Figure 31 shows the predicted effect concentrations (logio ACsos) plotted against the observed effect concentrations,
based on the multiple linear regression model, taking the aforementioned five physicochemical parameters as
explanatory variables (Equation 2), for all individual assay design types, separately. In total, 62.1% of all individual
predicted ACsos were within a factor 5 of the observed ACsos; 21.7% of the predicted datapoints were more than a
factor five below the observed datapoints (underestimated), while 16.1% of all datapoints were more than a factor
five above the observed data (overestimated). None of the predicted datapoints were a perfect fit.
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Assay Design Type (Linear Regression Analysis)
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Figure 31: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed toxicity, based on five physicochemical
parameters (log Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on assay design
type). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5
times higher/lower than the observed data).

Figure 32 shows the predicted effect concentrations (logio ACsos) plotted against the observed effect concentrations,
based on both the multiple linear regression model and the Random Forest model, covering all individual intended
target families. Overall, the Random Forest model had a higher predictive power (R? = 0.51, Figure 30) than the
multiple linear regression model (R? = 0.00028, Figure 31), implying that the correlation between toxicity and the five
physicochemical parameters of chemicals may be non-linear, when subdividing in vitro assays based on assay design

type.
Assay Design Type

Prediction method
Gl
10 *  Multiple regression

®  Random Forest

Predicted AC50 in uM (based on bioassay only)
Bl

16‘ 1(;" 15’2 16“ 1;12 1(;‘ 165
ACS50 in uM
Figure 32: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed toxicity, based on five physicochemical
parameters (log Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on assay design
type). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5
times higher/lower than the observed data).
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Figure 33: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed toxicity, based on five physicochemical
parameters (log Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per individual in vitro assay type (based on
assay design type). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted
values are 5 times higher/lower than the observed data).



BTO 2023.086 | December 2023 A deeper understanding of PMOC toxicity 58

morphology reporter ratiometric respirometric reporter
R?«0.07 y R?«03
RMSE = 0,883 g RMSE =0.853

N=1415 N=119

R'=034 e
= H 3 RMSE = 0.387 2
s e s s N=161
g g g
3 3 3
2 - 2 2
i i . |1
2 2 N 2
& & - &
e s
s fm ;
* “ .
viabiity reporter o ACS0 in UM ACS0 in M

R?=0.021

RMSE = 1.16

N = 46346
3
s
]
2
!
&

ACS0 nuM

Figure 33 continued.
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LIV Signal direction

The signal direction (Figure 1G) indicates whether the in vitro assay endpoint provides ‘gain’ or ‘loss’ of signal data
(U.S. EPA, 2015).

Random Forest model

In general, the Random Forest analysis, including the five most important predictive physicochemical descriptors (log
Koc, log Kow, biodegradation rate, vapor pressure and molecular weight) as explanatory variables resulted in explaining
41.71% (median: 41.71, S.E.: 0.00024) of all variance in the toxicity data (ACsos) when categorizing in vitro assays
based on signal direction. Overall, when grouping in vitro assays based on signal direction, the highest % of variances
explained were determined for in vitro assays with chemicals producing a hit (i.e., ACso £ 1000 uM) causing a loss of
signal (41.78%), while the lowest % variance explained by the Random Forest model was found for bioassays with
chemicals producing a hit causing a gain of signal (41.63%) (Table 1). in vitro assays characterized as functional
reporters Figure 34 shows a heatmap visualizing to which extent the five physicochemical descriptors of interest
correlate with toxicity for in vitro assays within one of the two signal directions. The increase in MSE (%IncMSE)
(Equation 1) corresponds to the extent to which the physicochemical parameter explains the variance in the Random
Forest model.
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Figure 34: Heatmap visualizing the increase in MSE (= to which extent the variable explains the variance in toxicity in the Random Forest model)
for the five individual physicochemical parameters (y-axis), when grouping the in vitro assays based on signal direction (x-axis).

Figure 35 shows the predicted effect concentrations (logio ACsos) plotted against the observed effect concentrations,
based on Random Forest analysis, taking the aforementioned five physicochemical parameters as explanatory
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variables, for both signal directions separately. In total, 79.15% of all individual predicted ACsos lied within a factor 5
of the observed ACsos; 9.35% of the predicted datapoints were more than a factor five below the observed datapoints
(underestimated), while 11.5% of all datapoints were more than a factor five above the observed data
(overestimated). 0.008% of the predicted datapoints were a perfect fit, which may indicate overfitting of the model.
Individual observed-predicted plots can be found below.

Signal Direction (Random Forest)

R?=-3.9e-07
RMSE = 3469 o % iandl P
N = 145934 S| petimie AT

Group
* gain

® loss

Predicted AC50 in uM (based on bioassay only)

10° 10% 10? 10* 10* 10°

10°
AC50 in uM
Figure 35: Predicted toxicity (ACso in uM) by the Random Forest model versus observed toxicity, based on five physicochemical parameters (log
Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on signal direction). The middle
dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5 times higher/lower

than the observed data).

Multiple linear regression model

In general, the multiple linear regression analysis, including the five most important predictive physicochemical
descriptors (log Ko, log Kow, biodegradation rate (half-life in days), vapor pressure and molecular weight) as
explanatory variables resulted in explaining 6.36% (median: 6.36% % , S.E.: 0.01%) of all variance in the toxicity data
(ACsos) when categorizing in vitro assays based on signal direction, based on the adjusted R2. Overall, when grouping
in vitro assays based on signal direction, the highest % of variances explained were determined for in vitro assays
with chemicals producing a hit causing a loss of signal (8.4%), while the lowest % variance explained by the multiple
linear regression model were found for in vitro assays with chemicals producing a hit causing a gain of signal (4.3%)
(Table 1).

Figure 36 shows the predicted effect concentrations (logio ACsos) plotted against the observed effect concentrations,
based on the multiple linear regression model, taking the aforementioned five physicochemical parameters as
explanatory variables (Equation 2), for both signal directions, separately. In total, 61.78% of all individual predicted
ACsos lied within a factor 5 of the observed ACsos; 21.8% of the predicted datapoints were more than a factor five
below the observed datapoints (underestimated), while 16.4% of all datapoints were more than a factor five above
the observed data (overestimated). None of the predicted datapoints were a perfect fit.



BTO 2023.086 | December 2023 A deeper understanding of PMOC toxicity 61

Signal Direction (Linear Regression Analysis)

B ; 7
, . /
B
R?=0.00051 s /
/ .
5 RMSE = 3629 / % %
107 .

N =133326 / . K
=
z -
>
g . — .
g L
S 404 o .
5 ¢ -*

.
B Group
o
© .
o . * gain
% . ® loss
c
£ 404
g
< e F c8a. 4 /'l
.~ o aoddmn -ns,( .
o g . 7’ . ’
g . B RTPY i r— bl AL A
, , ,
£ )/ oo ‘enlemmen Sub bl
1074 + 1 ®  emme
3 - e .
/ . .
, B .
N comoe . /
, /
/ / ,
- B /
, / /
.
10° 10* 102 10° 10% 10* 10°

AC50 in uM

Figure 36: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed toxicity, based on five physicochemical
parameters (log Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on signal
direction). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are
5 times higher/lower than the observed data).

Figure 37 shows the predicted effect concentrations (logio ACsos) plotted against the observed effect concentrations,
based on both the multiple linear regression model and the Random Forest model, covering all individual intended
target families. Overall, the Random Forest model had a slightly lower predictive power (R? = 3.9E-7, Figure 35) than
the multiple linear regression model (R? = 0.00051, Figure 36), implying that the correlation between toxicity and the
five physicochemical parameters of chemicals may be non-linear, when subdividing in vitro assays based on signal
direction. However, both the R? and variance explained by the random forest model were very low, implying that sub
setting in vitro assays based on signal direction does not lead to a better model fit in both cases.
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Figure 37: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed toxicity, based on five physicochemical
parameters (log Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on signal
direction). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are

5 times higher/lower than the observed data).
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Figure 38: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed toxicity, based on five physicochemical
parameters (log Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per individual assay type (based signal
direction). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are
5 times higher/lower than the observed data).
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LV Organism and tissue type

Random Forest model

In general, the Random Forest analysis, including the five most important predictive physicochemical descriptors (log
Koc, log Kow, biodegradation rate, vapor pressure and molecular weight) as explanatory variables resulted in explaining
37.1% (median: 41.36%, S.E.: 0.07%) of all variance in the toxicity data (ACsos) when categorizing in vitro assays based
on organism-tissue combination. Overall, when grouping bioassays based on organism-tissue combination, the
highest % of variances explained were determined for in vitro assays based on cortical rat cells (83.2%), while the
lowest % variance explained by the Random Forest model was found for in vitro assays based on human brain cells (-
25.56%) (Table 1). This implies that physicochemical descriptors included in the present study correlated strongly
with assays using cortical rat cells AND that variation in ACso values in the dataset including assays using corticol rat
cells was proportional to or higher than the variation of physicochemical descriptors from chemicals in the dataset.
Furthermore, this also implies that using a Random Forest model to predict toxicity for the subset of chemicals and
in vitro assay endpoint using human brain cells result in a prediction that is worse than taking the average of all ACso
values, likely due to data limitations. Figure 39 shows a heatmap visualizing to which extent the five physicochemical
descriptors of interest correlate with toxicity for in vitro assays within the organism-tissue combinations. The increase
in MSE (%IncMSE) (Equation 1) corresponds to the extent to which the physicochemical parameter explains the
variance in the Random Forest model.
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Figure 39: Heatmap visualizing the increase in MSE (= to which extent the variable explains the variance in toxicity in the Random Forest model)
for the five individual physicochemical parameters (y-axis), when grouping the in vitro assays based on organism-tissue combination (x-axis).

Figure 40 shows the predicted effect concentrations (logio ACsos) plotted against the observed effect concentrations,
based on Random Forest analysis, taking the aforementioned five physicochemical parameters as explanatory
variables, for both signal directions separately. In total, 85.54% of all individual predicted ACsos lied within a factor 5
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of the observed ACsos; 6.4% of the predicted datapoints were more than a factor five below the observed datapoints
(underestimated), while 8.1% of all datapoints were more than a factor five above the observed data (overestimated).
0.07% of the predicted datapoints were a perfect fit, which may indicate overfitting of the model. Individual

observed-predicted plots can be found below.
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Figure 40: Predicted toxicity (ACso in uM) by the Random Forest model versus observed toxicity, based on five physicochemical parameters (log
Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on organism-tissue combination).
The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values are 5 times
higher/lower than the observed data).

Multiple linear regression model

In general, the multiple linear regression analysis, including the five most important predictive physicochemical
descriptors (log Ko, log Kow, biodegradation rate (half-life in days), vapor pressure and molecular weight) as
explanatory variables resulted in explaining 10% (median: 9% %, S.E.:0.02%) of all variance in the toxicity data (ACsos)
when categorizing in vitro assays based on organism-tissue combination, based on the adjusted R2. Overall, when
grouping in vitro assays based on organism-tissue combination, the highest % of variances explained were
determined for in vitro assays based on rat kidney cells (31.8%), while the lowest % variance explained by the multiple
linear regression model were found for in vitro assays based on guinea pig spleen cells (-10%) (Table 1).

Figure 41 shows the predicted effect concentrations (logio ACsos) plotted against the observed effect concentrations,
based on the multiple linear regression model, taking the aforementioned five physicochemical parameters as
explanatory variables (Equation 2), for all organism-tissue combinations, separately.
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Organism Tissue (Linear Regression Analysis)
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Figure 41: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed toxicity, based on five physicochemical
parameters (Log Kow, Log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on organism-
tissue combination). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted
values are 5 times higher/lower than the observed data).

Figure 42 shows the predicted effect concentrations (logio ACsos) plotted against the observed effect concentrations,
based on both the multiple linear regression model and the Random Forest model, covering all individual intended
target families. Overall, the Random Forest model had a higher predictive power (R? = 0.38, Figure 40) than the
multiple linear regression model (R? = 0.02, Figure 41), implying that the correlation between toxicity and the five
physicochemical parameters of chemicals may be non-linear, when subdividing in vitro assays based on organism-
tissue combination. In total, 63.1% of all individual predicted ACsoes lied within a factor 5 of the observed ACses; 21%
of the predicted datapoints were more than a factor five below the observed datapoints (underestimated), while
15.9% of all datapoints were more than a factor five above the observed data (overestimated). None of the predicted
datapoints were a perfect fit.
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Figure 42: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed toxicity, based on five physicochemical
parameters (log Kow, log Ko, biodegradation rate, vapor pressure, and molecular weight), clustered per in vitro assay type (based on organism-
tissue type). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the predicted values
are 5 times higher/lower than the observed data).
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Figure 43: Predicted toxicity (ACso in uM) by the multiple linear regression model versus observed toxicity, based on five physicochemical
parameters (log Kow, log Koc, biodegradation rate, vapor pressure, and molecular weight), clustered per individual in vitro assay type (based on
organism-tissue combination). The middle dashed line represents the 1:1 ratio. The outer dashed lines represent the 1:5 ratio and 5:1 ratio (the
predicted values are 5 times higher/lower than the observed data).
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Figure 43 continued.
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Il Appendix: A preliminary Adverse
Outcome Pathway analysis for
PMOCs

I1.1 Introduction

Integrating knowledge of various biological reactions at molecular levels due to toxicants has attracted more
attention in the field of risk assessment. Adverse outcome pathways (AOPs) were proposed as a conceptual
framework to organize existing scientific knowledge by Ankley et al. 2010. These are models that identify the
sequence of molecular and cellular events required to produce a toxic effect when an organism is exposed to a
substance. AOPs consist of various key events (KEs) starting with a molecular initiating event (MIE) to lead to an
adverse outcome (AO) that is relevant to a risk assessment context such as survival. A substantial effort has been
made to enhance the AOPs for many chemicals, and identified AOPs are collected in the online database AOP-Wiki
(https://aopwiki.org/), which is hosted by the Society for the Advancement of Adverse Outcome Pathways.
Additionally, more studies have been conducted to enhance AOPs search by exploring associations between stressors
and KEs from scientific literature. The original method was applied to bisphenol A substituents and pesticides first
(Carvaillo et al. 2019), after which it was developed into the web server (Jornod et al. 2022) and an updated version
of a tool, AOP-helpFinder 2.0, which highlights features to facilitate to search and interpret AOPs more easily (Jaylet
et al. 2023). This tool is based on natural language processing (text mining) to search keywords in scientific literature
stored in PubMed database, by screening abstracts. The search result is provided with a score to support the weight
of evidence approach (Hardy et al., 2017). The AOP-helpFinder has contributed already to several investigations of
the mechanisms of exposure to per- and polyfluoroalkyl substances (PFAS) (Gundacker et al. 2022; Kaiser et al. 2022)
Here, we explored AOPs related to PMOCs. The AOP-helpFinder was employed in the analysis to search for possible
related AOPs from a wide range of previous studies in PubMed.

I1.11 Method

The AOP-helpFinder 2.0 (Jaylet et al. 2023) was used to explore the pathways that can be related to PMOCs, by
matching a number of research articles stored in the PubMed database, using the webserver (Jornod et al. 2022).
The stressor event analysis enables us to find AOPs that may have links to the target chemicals. The analysis requires
two types of data: chemical names and event names. The chemicals are in this case the list of 1119 PMOCs as
described in section 2.1 in the main report (BTO xxxx.xx — A deeper understanding of PMOC toxicity). The events
indicate biological events related to AOPs, such as MIE, KE, and AQO. For this study, the event names were taken from
Kaiser et al. (2022), who conducted an AOP analysis to address associations between PFAS exposure and metabolic
health outcomes. This list of events related to metabolism is shown in Table 3. The stressor event analysis was
performed according to the default setting, i.e. the search was performed in the full abstract of research articles from
PubMed, without a lemmatization process. By skipping the lemmatization process, the terms are kept in their natural
forms without standardizing them to their root or base. Confidence scores were assigned to each combination of the
stressors (1119 PMOCs) and the events based on the p-value derived from a Fisher’s exact test. This metric was
utilized to assess whether an occurrence demonstrates a higher frequency of association with a stressor (stressor-
event) in contrast to another event (event-event). The scores were divided into five categories to facilitate the
interpretation of the results: Low, Quite Low, Moderate, High, and Very High (Jaylet et al. 2023).
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Table 3: List of the events used for the stressor event analysis (taken from Kaiser et al. 2022)

Insulin Resistance Syndrome Syndrome X Dysmetabolic Syndrome X
Type 2 Diabetes Mellitus Insulin Sensitivity Glucose Intolerances
Insulin Resistance Metabolic syndrome Dyslipidemias
Hyperlipidemias High Blood Pressure Hypertension

Central Obesity Liver Diseases Thyroid Diseases
Metabolic Cardiovascular Syndrome Hyperglycemia Dyslipoproteinemias

Abdominal Obesity

1.1l Results and discussion

Among the 1119 PMOCs, 479 chemicals were found in the stressor event analysis at one or more occurrences. The
count of the occurrences, i.e., the number of links indicating associations between each chemical and stressor event,
was about 1837 on average, with a range of 1-75561. The distribution of the events over the found stressors, i.e.,
the studied PMOCs (Figure 4),was based on 216,008 PubMed articles that provided one or more links. This indicates
that abundant scientific literature was employed in this search. The event “Hypertension” had the largest number of
links (Figure 45). The second largest number of links was found with the event “Type 2 Diabetes Mellitus”, and those
two top links accounted for more than 50% of the total links. This means that the list of PMOCs was most commonly
associated with these events in scientific literature. Figure 46 shows with which chemicals those events were often
associated and the confidence score for each relationship. The confidence scores have five levels, and the results
indicate that the Type 2 Diabetes Mellitus had the higher scores (“Very High”) in their links, compared with the links
of the other events. Among 9101 combinations resulting from 479 stressors and 19 events, 3011, 30, 59, 32, and 250
stressor-event pairs were found to have confidence scores of Low, Quite Low, Moderate, High, and Very High,
respectively (no links were found in the rest of the 5708 pairs). This indicates that the links between the stressors
and the events were not statistically significant in most cases. To discuss the results more carefully, examining original
literature would be essential; however, it should be noted that a systematic approach should be designed prior to
the analysis of a multitude of studies. Overall, the current analysis suggests that the PMOCs we retrieved from several
databases could be associated with various metabolic pathways. The usefulness of the AOP-helpFinder 2.0 was
highlighted as a screening tool to search possible relevant metabolic pathways, which would be helpful for further
risk assessment for these chemicals.
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Figure 45: Distribution of stressor-event links according to the 19 most common events, representing 100% of the total data set (19 distinct events
and 880,015 links).
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Distribution of stressor-event links according to the 30 most common links,
representing 52.2% of the total data set (30 different links and 880015 total links)
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Figure 46: Distribution of stressor-event links according to the 30 most common links

Although Nelms et al. (2018) showed that ACso results may be combined with AOPs in order to come to a more
complete risk assessment, combining ToxCast data with AOP information was outside the scope of this present
study. Future studies can explore possibilities to use experimental and predicted ACso data from ToxCast for water
relevant compounds in AOP pathway frameworks to relate in vitro toxicity (bioactivity) data to adverse effects in

Vivo.
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